Mouse Heart-Specific Stem Cells Potentially Offer Hope For Heart Attack Patients


Biomedical researchers from the University of California, San Francisco (UCSF) have published a stem cell experiment in mice that might provide another way to fix damaged heart muscle in heart attack patients. If these results pan out, they could potentially could increase heart function, minimize scar size, promote the growth of new blood vessels around the heart, and doo all this while avoiding the risk to tissue rejection.

Sounds too good to be true? It was published in PLoS ONE. You can read about it here.

To summarize the experiments, researchers isolated a new heart-specific stem cell from the heart tissue of middle-aged mice. When cultured in a laboratory dish, the cells had the ability to differentiate into heart muscle cells that beat in the culture dish. However, these same cells could also become blood vessels, or smooth muscle, which surrounds blood vessels and regulates the diameter of the vessels. All of these tissues are essential for the heart to work and properly function.

After showing that these cells could be grown in the laboratory in converted into heart-specific cell types, this research group examined the ability of these cells to do the same thing inside a living organism. After expanding the cells in culture, they transplanted them into the hearts of sibling mice that had the same genetic lineage as the mice from which the heart stem cells had been isolated in the first place. This prevented the possibility of the immune system of the recipient mice from attacking and rejecting the implanted cells. The implanted stem cells made blood vessels and also formed smooth muscle. The increased blood flow improved heart function.

Even more exciting, these heart specific stem cells are found in all four chambers of the heart. The “cardiosphere-derived cells” (CDCs) that have been used in other clinical trials are only found in the upper chambers of the heart (atria), and express slightly different cell surface proteins. When grown in culture, these cells grow into spheres of cells that are known as “cardiospheres.”  These new heart-specific stem cells are more widely located in the heart, which means that it is possible to isolate them from patients’ hearts by doing ventricular or atrial biopsies. Biopsies of the right ventricle are among the safest procedures for procuring heart cells from live patients. This procedure is relatively easy to perform and does not adversely affect the patient.

The paper’s first author, Jianqin Ye, PhD, MD, senior scientist at UCSF’s Translational Cardiac Stem Cell Program, said, “These findings are very exciting . . . we showed that we can isolate these cells from the heart of middle-aged animals, even after a heart attack. . . we determined that we can return these cells to the animals to induce repair.”

Senior author Yerem Yeghiazarians, MD, director of UCSF’s Translational Cardiac Stem Cell Program and an associate professor at the UCSF Division of Cardiology, agreed with Ye’s assessment: “The finding extends the current knowledge in the field of native cardiac progenitor cell therapy. Most of the previous research has focused on a different subset of cardiac progenitor cells. These novel cardiac precursor cells appear to have great therapeutic potential.”

Yeghiazarians hopes that those patients who have suffered severe heart failure after a heart attack or have enlargement of the heart (cardiomyopathy) could still be treated with their own heart-specific stem cells to improve their overall health and heart function. Because these cells would come from the patients, there would be no concern of cell rejection after therapy.

These heart-specific stem cells are also known as Sca-1+ stem cells. Sca-1 is a small cell surface protein that is involved in cell signaling. These heart-specific Sca-1+ cells also express a transcription factor called Islet (Isl-1). These cells are known to play an important role in heart development. Most of the previous research on heart stem cells has examined different subset of cells known as “c-kit” cells. Sca-1+ cells, like the c-kit cells, are located within a larger clump of cells called cardiospheres.

To isolate the Sca-1+ cells, Yeghiazarians’ group devised ways to separate the Sca-1-expressing cells that were also expressing high levels of Isl-1. Sca-1 is rather easy to use for isolation, since it is a cell surface protein, but Isa-1 is a nuclear protein and is less useful for isolation purposes.

Yeghiazarians proposed that the co-expression of these two molecules that are also made during heart development suggests a strategy for heart therapy: “Heart disease, including heart attack and heart failure, is the number one killer in advanced countries. It would be a huge advance if we could decrease repeat hospitalizations, improve the quality of life and increase survival.” By giving the heart cells that are extremely similar to those cells that help construct it during development; those same cells could reconstruct the heart when it starts to fail.

More studies are on the board for the future, and these animal studies might lead to future clinical trials.

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).