Human Neurons Derived from Adult Brain Cells


A research group from Mainz, Germany have discovered a protocol that can reprogram a particular type of brain cell from human brains into new neurons.

Within the brain, neurons are the cells responsible for nerve impulses. Learning and memory, personality, volition and responses to stimuli are functions of neurons. When large numbers of neurons die, the patient suffers and their memory leaves them, their personality changes, or worse. Neurodegenerative diseases such as Alzheimer’s disease or Parkinson’s disease cause the death of large numbers of neurons and it is the death of neurons that is responsible for the symptoms of disease like these.

Benedikt Berninger, a faculty member of the Institute of Physiological Chemistry, at the Johannes Gutenberg University Mainz, Germany, and the senior author of this research said, “This works aims at converting cells that are present throughout the brain but themselves are not nerve cells into neurons. The ultimate goal we have in mind is that this may one day enable us to induce such conversion within the brain itself and provide a novel strategy for repairing the injured or diseased brain.”

The cells used by Berninger’s laboratory are known as “pericytes.” Pericytes are found in close association with blood vessels and are important in maintaining the blood-brain-barrier. Pericytes have also been shown to play a role in wound healing in other parts of the body.

Berninger chose pericytes for his research because he wanted to “target these cells and entice them to make nerve cells,” so that he and his research team could “take advantage of this injury response.”

When the converted neurons were subjected to further tests, they produced the normal types of electrical-chemical signals usually found in neurons, and also extended their connections to other neurons. This provided evidence that the converted cells could integrate into neural networks.

In their paper (Karow, et al., Cell Stem Cell 2012 11(4): 471), Berninger’s team write, “While much needs to be learnt (sic) about adapting a direct neuronal reprogramming strategy to meaningful repair in vivo, our data provide strong evidence for the notion that neuronal reprogramming of cells of pericytic origin within the damaged brain may become a viable approach to replace degenerated neurons.”