John Gurdon Embraces Human Cloning


Wesley Smith has reported that Nobel Laureate John Gurdon, who shared the Nobel Prize in Medicine this year with Japanese induced pluripotent stem cell discoverer Shinya Yamanaka, has come out in favor of human cloning.

From the story in the Daily Mail:
‘I take the view that anything you can do to relieve suffering or improve human health will usually be widely accepted by the public – that is to say if cloning actually turned out to be solving some problems and was useful to people, I think it would be accepted,’ he said. During his public lectures – which include speeches at Oxford and Cambridge Universities – he often asks his audience if they would be in favour of allowing parents of deceased children, who are no longer fertile, to create another using the mother’s eggs and skin cells from the first child, assuming the technique was safe and effective.

‘The average vote on that is 60 per cent in favour,’ he said. ‘The reasons for “no” are usually that the new child would feel they were some sort of a replacement for something and not valid in their own right. ‘But if the mother and father, if relevant, want to follow that route, why should you or I stop them?’

 

Smith then quotes from his magnificent book “Consumers Guide to a Brave New World,” which all my readers to RUN out to buy and read over and over again:

Scientists would have to clone thousands of embryos and grow them to the blastocyst stage [one week] to ensure that part of the process leading up to transfer into a uterus could be “safe,” monitoring and analyzing each embryo, destroying each one in the process. Next, cloned embryos would have to be transferred into the uteruses of women volunteers [or implanted in an artificial womb]. The initial purpose would be analysis of development, not bringing the pregnancy to a live birth. Each of these clonal pregnancies would be terminated at various points of development, each fetus destroyed for scientific analysis. The surrogate mothers would also have to be closely monitored and tested, not only during the pregnancies but also for a substantial length of time after the abortions.

Finally, if these experiments demonstrated that it was probably safe to proceed, a few clonal pregnancies would be allowed to go to full term. Yet even then, the born cloned babies would have to be constantly monitored to determine whether any health problems develop. Each would have to be followed (and undergo a battery of tests both physical and psychological) for their entire lives, since there is no way to predict if problems [associated with gene expression] might arise later in childhood, adolescence, adulthood, or even into the senior years.

 

Smith, in my view, is spot on. Therapeutic cloning will not stop at using cloned blastocysts to make patient-specific embryonic stem cell lines. The reason for this is that even though cells made from differentiated embryonic stem cells can have therapeutic value, such cells can also be rejected by the immune system of the host animal. A much more fail-safe way to do this experiment is to gestate the embryos to the fetal stage and use the fetal tissues.

Once we go down the road of cloning and destroying embryos just to make embryonic stem cell lines from them, what’s to keep us from aborting fetuses just to get their cells? This slippery slope is real and speaks volumes, none of it good, about a society that sacrifices its youngest and more vulnerable members to serve the needs of others. It cheapens human life to the nth degree and at its lowest point, it simple murder.

Gurdon, however, speaks of reproductive cloning to replace children lost through tragedy. While I can appreciate the sentiment, sentiment is an extremely poor reason basis for ethics. Folks, biology is not destiny. Cloning experiments in animals have shown us that even cloned embryos made from material taken from the same mother, that are genetically identical are neither identical to their mothers nor are they identical to each other. Random events that occur during development and the way each individual responds to their environment shapes them in a unique manner. The cloned sheep Dolly was completely unlike her cloned siblings in personality, behavior, or overall appearance. The same can be said for CC (for “Carbon Copy”), the first cloned cat, which looked unlike her mother and had a very different personality.

Yet these cloned children are asked from the second they are born to replace another child who is unlike them. The cloned child is a human person and while the right for each person to be authentically who there are in an inherent right of all human beings, this very right is denied these cloned kids – they are born for the very reason that they can be someone else. This is a violation of everything it means to be human, and it is the very reason no good thing can come from human cloning.

Gurdon is a brilliant scientist, but as we have seen before, great scientists sometimes make terrible ethicists.

A Patient-Friendly Way to Make Stem Cells


Scientists at Cambridge University in the laboratory Amer Ahmed Rana have used blood samples to isolate cells from which patient-specific stem cells were made. Because blood samples are far more routine than tissue or organ biopsies, they can provide a much more patient-friendly way to secure material for the production of patient-specific stem cells.

Induced pluripotent stem cells (iPSCs) are made from adult cells by genetic engineering techniques that introduce four specific genes into them. The adult cells then de-differentiate to a more developmentally primitive state and if these cells survive and are successfully cultured, they will form an iPSC line.

Rana and his co-workers cultured blood drawn from several heart patients to isolate a blood cells known as a “late outgrowth endothelial progenitor cell” or L-EPC. Endothelial cells are those cells that compose blood vessels, and endothelial progenitor cells or EPCs are the stem cell population that make endothelial cells. EPCs are found in bone marrow, but some are also found in the peripheral circulation.

There are two main types of EPCs: early-outgrowth and late-outgrowth EPCs. Early-outgrowth EPCs are among the first cells to form spindle-shaped clusters of cells only a few days after being placed in culture. Early-outgrowth EPCs secrete high levels of blood vessel-inducing molecules, but they have only a limited ability to proliferate. They also are able to ingest bacteria, like other white blood cells. Late outgrowth EPCs are much rarer and they grow very well in culture, but are unable to ingest bacteria. They also can form capillaries and repair damaged blood vessels when injected into laboratory animals. There is a debate as to whether or not these cells come from the bone marrow or are dislodged from blood vessels.

Rana and his colleagues have designed a protocol for converting L-EPCs into iPSCs that can then be differentiated into heart, or blood vessel cells rather easily. This practical and rather efficient method does not require tissue biopsies, which are painful and impractical in very young or very old patients, and only requires the cells available from a single, routine blood sample.

Also, because blood samples can be efficiently and safely frozen, the cells from the blood sample can be locked in time for later use, when the patient needs regenerative treatments. The ease of this procedure should, Rana hopes, push it further toward human clinical trials in the near future.