Treating Heart Patients with “Smart” Stem Cells


By aggressively treating heart attack patients soon after their episodes, clinicians have been able to reduce early mortality from heart attacks. However, the survival of these patients tends to create a whole new set of issues for them and their hearts. Chronic heart failure is a common aftermath of a heart attack for heart attack survivors. (see Kovacic JC and Fuster V., Clin Pharmacol Ther 2011;90:509-18).

Since the heart muscle (myocardium) has only a limited capacity to regenerate after a heart attack, multifaceted treatments have emerged that are designed to relieve symptoms and improve the patient’s clinical status. In particular, therapies target impaired contractility of the heart and the ability of the heart to handle the workload without enlarging. However, these treatments do not address the loss of heart muscle that underlies all heart attacks (see McMurray JJ. Systolic heart failure. N Engl J Med 2010;362:228-38). To address the loss of contracting heart tissue, stem cells, traditionally isolated from bone marrow, have been used in several clinical trials. However, the results of these studies have been highly variable, since most bone marrow stem cells placed in a heart after a heart attack, die soon after implantation.

To improve the ability of bone marrow stem cells to repair the heart, Andre Terzic from the Mayo Clinic Center for Regenerative Medicine has designed a special cocktail to induce mesenchymal stem cells from bone marrow to become more heart-friendly. This cocktail consisted of the following growth factors: TGFβ1, BMP-4, Activin-A, retinoic acid, IGF-1, FGF-2, α-thrombin and IL-6. Mesenchymal stem cells were cultured for 10 days in this cocktail and then tested for heart-specific genes.

Terzic calls this procedure “cardiopoiesis,” and when he subjected bone marrow mesenchymal stem cells (BM-MSCs) to this procedure, they expressed a cadre of genes that is normally found in developing heart cells (Nkx2-5, MEF2C, GATA4, TBX5, etc.). In an earlier publication, Terzic and his colleagues transplanted BM-MSCs from heart patients into the hearts of mice that had suffered a heart attack and compared the effects of these cells on the heart, with BM-MSCs that had undergone this guided cardiopoiesis protocol. The results were astounding. Not only did the function of the hearts that had received the guided cardiopoiesis M-MSCs much more normal than those had had received the untreated BM-MSCs, but post-mortem examination of the hearts showed that the hearts that had received guided cardiopoiesis BM-MSCs contained human heart muscle cells integrated into the heart muscle tissue (Atta Behfar, et al., J Am Coll Cardiol. 2010 August 24; 56(9): 721–734). Therefore, this procedure, cried out for a clinical trial, and data from such a trial has already been reported.

A, Human-specific troponin-I (green) in the anterior wall of naive- versus CP-treated hearts, respectively, co-localized with ventricular myosin light chain (MLC2v, red). Bar, 100 μm. B, Human troponin-I staining of naïve versus CP hMSC treated hearts, counterstained with α-Actinin (red), demonstrated engraftment of human cells. Cell cycle activation, documented by Ki-67 expression (yellow, arrows), noted in human troponin positive and endogenous cardiomyocytes. C, Confocal evaluation of collateral vessels from CP hMSC treated hearts demonstrated human-specific CD-31 (PECAM-1) staining. D, Human lamin staining (arrows) co-localized with nuclei of smooth muscle in vessels from CP hMSC treated but not saline or naïve treated hearts. Bar, 20 μm for B-D.
A, Human-specific troponin-I (green) in the anterior wall of naive- versus CP-treated hearts,
respectively, co-localized with ventricular myosin light chain (MLC2v, red). Bar, 100 μm.
B, Human troponin-I staining of naïve versus CP hMSC treated hearts, counterstained with
α-Actinin (red), demonstrated engraftment of human cells. Cell cycle activation,
documented by Ki-67 expression (yellow, arrows), noted in human troponin positive and
endogenous cardiomyocytes. C, Confocal evaluation of collateral vessels from CP hMSC
treated hearts demonstrated human-specific CD-31 (PECAM-1) staining. D, Human lamin
staining (arrows) co-localized with nuclei of smooth muscle in vessels from CP hMSC
treated but not saline or naïve treated hearts. Bar, 20 μm for B-D.

In a paper from February 2013 (Bartunek J, et al., Journal of the American College of Cardiology (2013), doi: 10.1016/j.jacc.2013.02.071), Terzic and his team has reported on the administration of BM-MSCs into the hearts of 34 heart patients. Of these patients, 21 were implanted with their own BM-MSCs that had undergone guided cardiopoiesis and the other 12 received standard therapy for heart patients with no transplanted cells.

The results from this study were striking to say the least. According to Terzic, “The benefit to patients who received cardiopoietic stem cell delivery was significant.” Cardiologist Charles Murry wrote in an editorial, “Six months after treatment, the cell therapy group had a seven percent absolute improvement in EF (ejection fraction) over baseline, versus a non-significant change in the control group. The improvement in EF is dramatic, particularly given the duration between the ischemic injury and cell therapy. It compared favorably with our most potent therapies in heart failure.”

This clinical trial, known as the C-CURE trial, which stands for Cardiopoietic Stem Cell Therapy in Heart Failure. was an international, multi-center trial that treated enrolled patients from hospitals in Belgium, Serbia, and Switzerland. This trial represents the culmination of almost a decade of work by Terzic and others. “Discovery of rare stem cells that could inherently promote heart regeneration provided a critical clue. In following this natural blueprint, we further developed the know-how needed to convert patient-derived stem cells into cells that can reliably repair a failing heart.”

For this trial, Mayo Clinic partnered with Cadio3 Biosciences, which is a bio-science company in Mort-Saint-Guilbert, Belgium. This company provided advance product development, manufacturing scale-up, and clinical trial execution.  Adaptation of this exciting new technology to the clinic could mean a new exciting fix for heart patients.

Advertisements