Using Human Induced Pluripotent Stem Cells to Study Diamond Blackfan Anemia

Diamond-Blackfan Anemia or DBA results from mutations in a gene on chromosome 19 (in most cases). Mutations in the ribosomal protein S19 affects the ability of blood cells to make protein and causes low numbers of red blood cells. DBA patients are dependent on blood transfusions, but some are cured, to some extent at least, by bone marrow transplants. Unfortunately, some DBA patients have severe side effects from bone marrow transplants, which means that bone marrow transplants are not a panacea for all DBA patients.

Fortunately, Michell J. Weiss and his colleagues at the Children’s Hospital of the Philadelphia (CHOP) have used human induced pluripotent stem cells (iPSCs) to study DBA at the molecular level and even develop the beginnings of a cure for DBA patients. Weiss collaborated with Monica Bessler, Philip Mason, and Deborah French, all of whom work at CHOP.

Remember that red blood cells are made inside the bone marrow of the patient by hematopoietic stem cells (HSCs). HSCs divide to renew themselves, and to produce a daughter cell that will differentiate into one of several different types of blood cells. As a kind of gee-wiz number, a healthy adult person will produce approximately 10[11]–10[12] (100 billion to 1 trillion) new blood cells are produced daily in order to maintain steady state levels in the peripheral circulation.

In DBA patients, the bone marrow is empty of red blood cells. In order to get a better idea why, Weiss and his team isolated fibroblasts from the skin of DBA patients, and used genetic engineering techniques to convert them into iPSCs. When Weiss and his group tried to differentiate these iPSCs derived from DBA patients into red blood cells, they were not able to make normal red blood cells. However, Weiss and his colleagues used different genetic engineering techniques to fix the mutation in these iPSCs. After fixing the mutation, these cells could be differentiated into red blood cells. This experiment showed that it is possible to repair a patient’s defective cells.

This is a proof-of-principle experiment and there are many hurdles to overcome before this type of experiment can be done in the clinic to DBA patients. However, these iPSCs can play a vital role in deciphering some of the mysteries surrounding this disease. For example, two family members may have exactly the same mutation, but only one of them shows the disease whereas the other does not. Since iPSCs are specific to the patient from whom they were made, Weiss and his group hope to compare the molecular differences between them and understand the difference in expression of this disease.

Also, these cells offer a long-lasting model system for testing new drugs or gene modifications that may offer new treatments that are personalized to individual patients.

Weiss and his research group used this same technology to test drugs for the often aggressive childhood leukemia, JMML or Juvenile Myelomonocytic Leukemia. Once again, iPSCs were made from JMML patients and differentiated into myeloid cells, which divided uncontrollably just as the original myeloid cells from JMML patients.

Weiss and his colleagues used these cells to test two drugs, both of which are active against JMML. One of them is an inhibitor of the MEK kinase that was quite active against these cells. This illustrates how iPSCs can be used to test personalized treatment regimes for patients.

The stem cell core facility at CHOP is also in the process of making iPCS lines for several inherited diseases: dyskeratosis congenita, congenital dyserythropoietic anemia, thrombocytopenia absent radii, Glanzmann’s thrombasthenia, and Hermansku-Pudlak syndrome.

The even longer term goal is the use these lines to specifically study the behavior of such cells in culture and under certain conditions, test various drugs on them, and to develop treatment strategies on them as well.