Artificial Bones From Umbilical Cord Stem Cells


I am back from vacation. We visited some colleges in Indiana for my daughter who will be a senior this year. She really liked Taylor University and Anderson University. We’ll see if the tuition exchange works out.

Now to blogging.

Scientists from Granada, Spain have patented a hew biomaterial that consists of activated carbon cloth that just happens to be able to support the growth of cells that have the ability to regenerate bone. These results came from experiments that were conducted outside any living animals, but they hope to confirm these results in a living animal in the near future.

This new biomaterial facilitates the growth of bone-making cells derived from umbilical cord stem cells. This activated carbon cloth acts as a scaffold for cells that differentiate into “osteoblasts,” which are bone-building cells. This activated carbon cloth gives the osteoblasts a proper surface upon which to promote the growth of new bone.

Bone loss as a result of cancer, trauma, or degenerative bone diseases requires replacement bone to heal to damaged bone. Making new bone in the laboratory that can be transplanted is an optimal strategy for treating these patients.

Even though this laboratory-made bone was not used in living laboratory animals to date, the laboratory results look quite impressive. In the future, such techniques could help manufacture medicines or other sources of material to repair bone or lost cartilage. Once such artificial bone has been made in the laboratory, the Spanish team hopes to transplant it into rats or rabbits to determine if it can regenerate bone in such creatures.

Presently, no materials exist to replace lost bone. The method used to make bone by the research team from Granada uses a three-dimensional support that facilitates the production of those cell types that regenerate bone without the need for additional growth factors.

The growth of these umbilical cord stem cells on activated carbon cloth produced a product that could produce organic bone, but also mineralize the organic bone matrix. This patent could have numerous clinical applications in regenerative medicine and the Granada group hopes to obtain funding to continue this work and achieve their ultimate objective: to regenerate bones by implanting biomaterial in patients with bone diseases.

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).