Do Stem Cells from Bone Outdo Those from the Heart in Regenerating Cardiac Tissue?


Scientists at Tulane University in New Orleans, La. (US) have completed a study that suggests that stem cells derived from cortical, or compact bone do a better job of regenerating heart tissue than do the heart’s own stem cells.

The study, led by Steven R. Houser, Ph.D., FAHA, director of Tulane’s School of Medicine’s Cardiovascular Research Center (CVRC), could potentially lead to an “off the rack” source of stem cells for regenerating cardiac tissue following a heart attack.

Cortical bone stem cells (CBSCs) are considered some of the most pluripotent cells in the adult body. These cells are naïve and ready to differentiate into just about any cell type. However, even though CBSCs and similar pluripotent stem cells retain the ability to develop into any cell type required by the body, they have the potential to wander off course and land in unintended tissues. Cardiac stem cells, on the other hand, are more likely to stay in their resident tissue.

Bone cross-section

To determine how CBSCs might behave in the heart, Houser’s team, led by Temple graduate student Jason Duran, collected the cells from mouse tibias (shin bones), expanded them in the lab and then injected them into back the mice after they had undergone a heart attack.

The cells triggered the growth of new blood vessels in the injured tissue and six weeks after injection had differentiated into heart muscle cells. While generally smaller than native heart cells, the new cells had the same functional capabilities and overall improved survival and heart function.

Similar improvements were not observed in mice treated with cardiac stem cells, nor did those cells show evidence of differentiation.

“What we did generates as many questions as it does answers,” Dr. Houser said. “Cell therapy attempts to repopulate the heart with new heart cells. But which cells should be used, and when they should be put into the heart are among many unanswered questions.”

The next step will be to test the cells in larger animal models. The current study was published in the Aug. 16 issue of Circulation Research.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).