Regenerating Injured Kidneys with Exosomes from Human Umbilical Cord Mesenchymal Stem Cells

Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H: Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 2013, 4:34.

Ying Zhou and colleagues from Jiangsi University have provided helpful insights into how adult stem cell populations – in particular, mesenchymal stem cells (MSCs) isolated from human umbilical cord (hucMSCs) – are able to regulate tissue repair and regeneration. Adult stem cells, including MSCs from different sources, confer regenerative effects in animal models of disease and tissue injury. Many of these cells are also in phase I and II trials for limb ischemia, congestive heart failure, and acute myocardial infarction (Syed BA, Evans JB. Nat Rev Drug Discov 2013, 12:185–186).

Despite the documented healing capabilities of MSCs, in many cases, even though the implanted stem cells produce genuine, reproducible therapeutic effects, the presence of the transplanted stem cells in the regenerating tissue is not observed. These observations suggest that the predominant therapeutic effect of stem cells is conferred through the release of therapeutic factors. In fact, conditioned media from adult stem cell populations are able to improve ischemic damage to kidney and heart, which confirms the presence of factors released by stem cells in mediating tissue regeneration after injury (van Koppen A, et al., PLoS One 2012, 7:e38746; Timmers L, et al., Stem Cell Res 2007, 1:129–137). Additionally, the secretion of factors such as interleukin-10 (IL-10), indoleamine 2,3-dioxygenase (IDO), interleukin-1 receptor antagonist (IL-1Ra), transforming growth factor-beta 1 (TGF-β1), prostaglandin E2 (PGE2), and tumor necrosis factor-alpha-stimulated gene/protein 6 (TSG-6) has been implicated in conferring the anti-inflammatory effects of stem cells (Pittenger M: Cell Stem Cell 2009, 5:8–10). These observations cohere with the positive clinical effects of MSCs in treating Crohn’s disease and graft-versus-host disease (Caplan AI, Correa D. Cell Stem Cell 2011, 9:11–15).

Another stem cell population called muscle-derived stem/progenitor cells, which are related to MSCs, can also extend the life span of mice that have the equivalent of an aging disease called progeria. These muscle-derived stem/progenitor cells work through a paracrine mechanism (i.e. the release of locally acting substances from cells; see Lavasani M, et al., Nat Commun 2012, 3:608). However, it is unclear what factors released by functional stem cells are important for facilitating tissue regeneration after injury, disease, or aging and the precise mechanism through which these factors exert their effects. Recently, several groups have demonstrated the potent therapeutic activity of small vesicles called exosomes that are released by stem cells (Gatti S, et al., Nephrol Dial Transplant 2011, 26:1474–1483; Bruno S, et al., PLoS One 2012, 7:e33115; Lai RC, et al., Regen Med 2013, 8:197–209; Lee C, et al., Circulation 2012, 126:2601–2611; Li T, et al., Stem Cells Dev 2013, 22:845–854). Exosomes are a type of membrane vesicle with a diameter of 30 to 100 nm released by most cell types, including stem cells. They are formed by the inverse budding of the multivesicular bodies and are released from cells upon fusion of multivesicular bodies with the cell membrane (Stoorvogel W, et al., Traffic 2002, 3:321–330).

Exosomes are distinct from larger vesicles, termed ectosomes, which are released by shedding from the cell membrane. The protein content of exosomes depends on the cells that release them, but they tend to be enriched in certain molecules, including adhesion molecules, membrane trafficking molecules, cytoskeleton molecules, heat-shock proteins, cytoplasmic enzymes, and signal transduction proteins. Importantly, exosomes also contain functional mRNA and microRNA molecules. The role of exosomes in vivo is hypothesized to be for cell-to-cell communication, transferring proteins and RNAs between cells both locally and at a distance.

To examine the regenerative effects of MSCs derived from human umbilical cord, Zhou and colleagues used a rat model of acute kidney toxicity induced by treatment with the anti-cancer drug cisplatin. After treatment with cisplatin, rats show increases in blood urea nitrogen and creatinine levels (a sign of kidney dysfunction) and increases in apoptosis, necrosis, and oxidative stress in the kidney. If exosomes purified from hucMSCs, termed hucMSC-ex are injected underneath the renal capsule into the kidney, these indices of acute kidney injury decrease. In cell culture, huc-MSC-exs promote proliferation of rat renal tubular epithelial cells in culture. These results suggest that hucMSC-exs can reduce oxidative stress and programmed cell death, and promote proliferation. What is not clear is how these exosomes pull this off. Zhou and colleagues provide evidence that hucMSC-ex can reduce levels of the pro-death protein Bax and increase the pro-survival Bcl-2 protein levels in the kidney to increase cell survival and stimulate Erk1/2 to increase cell proliferation.

Another research group has reported roles for miRNAs and antioxidant proteins contained in stem cell-derived exosomes for repair of damaged renal and cardiac tissue (Cantaluppi V, et al., Kidney Int 2012, 82:412–427). In addition, MSC exosome-mediated delivery of glycolytic enzymes (the pathway that degrades sugar) to complement the ATP deficit in ischemic tissues was recently reported to play an important role in repairing the ischemic heart (Lai RC, et al., Stem Cell Res 2010, 4:214–222). Clearly, stem cell exosomes contain many factors, including proteins and microRNAs that can contribute to improving the pathology of damaged tissues.

The significance of the results of Zhou and colleagues and others is that stem cells may not need to be used clinically to treat diseased or injured tissue directly. Instead, exosomes released from the stem cells, which can be rapidly isolated by centrifugation, could be administered easily without the safety concerns of aberrant stem cell differentiation, transformation, or recognition by the immune system. Also, given that human umbilical cord exosomes are therapeutic in a rat model of acute kidney injury, it is likely that stem cell exosomes from a donor (allogeneic exosomes) would be effective in clinical studies without side effects.

These are fabulously interesting results, but Zhou and colleagues have also succeeded in raising several important questions. For example: What are the key pathways targeted by stem cell exosomes to regenerate injured renal and cardiac tissue? Are other tissues as susceptible to the therapeutic effects of stem cell exosomes? Do all stem cells release similar therapeutic vesicles, or do certain stem cells release vesicles targeting only specific tissue and regulate tissue-specific pathways? How can the therapeutic activity of stem cell exosomes be increased? What is the best source of therapeutic stem cell exosomes?

Despite these important remaining questions, the demonstration that hucMSCderived exosomes block oxidative stress, prevent cell death, and increase cell proliferation in the kidney makes stem cell-derived exosomes an attractive therapeutic alternative to stem cell transplantation.

See Dorronsoro and Robbins: Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Research & Therapy 2013 4:39.


Published by


Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).