A protocol for direct reprogramming of fibroblasts into motor neurons

A very efficient protocol for directly reprogramming skin-based fibroblasts into neurons is provided at this link. The induced neurons have all the electrophysiological characteristics of normal neurons and because no embryonic stage is passed through, these cells are safer than iPSCs. The problem is making enough of them for therapeutic purposes. At this point, the iPSCs really have it hands down.

View original post

Adult Stem Cells Help Build Human Blood Vessels in Engineered Tissues

University of Illinois researchers have identified a protein expressed by human bone marrow stem cells that guides and stimulates the construction of blood vessels.

Jalees Rehman, associate professor of cardiology and pharmacology at the University of Illinois at Chicago College of Medicine and lead author of this paper, said: “Some stem cells actually have multiple jobs.”

As an example, stem cells from bone marrow known as mesenchymal stem cells can form bone, cartilage, or fat, but they also have a secondary role in that they support other cells in bone marrow.

Rehman and others have worked on developing engineered tissues for use in cardiac patients, and they noticed that mesenchymal stem cells were crucial for organizing other cells into functional stem cells.

Workers from Rehman’s laboratory mixed mesenchymal stem cells from human bone marrow with endothelial cells that line the inside of blood vessels. The mesenchymal stem cells elongated and formed a kind of scaffold upon which the endothelial cells adhered and organized to form tubes.

“But without the stem cells, the endothelial cells just sat there,” said Rehman.

When the cell mixtures were implanted into mice, blood vessels formed that were able to support the flow of blood. Then Rehman and his colleagues examined the genes expressed when their stem cells and endothelial cells were combined. They were aided in this venture by two different bone marrow stem cell lines, one of which supported the formation of blood vessels, and the other of which did.

Their microarray experiments showed that the vessel-supporting mesenchymal stem cells expressed high levels of the SLIT3 protein. SLIT3 is a blood vessel-guidance protein that directs blood vessel-making cells to particular places and induces them to make blood vessels. The cell line that do not stimulate blood vessel production made little to no SLIT3.

Rehman commented, “This means that not all stem cells are created alike in terms of their SLIT3 production and their ability to encourage blood vessel formation.”

Rehman continued: “While using a person’s own stem cells for making blood vessels is ideal because it eliminates the problem of immune rejection, it might be a good idea to test a patient’s stem cells to make sure they are good producers of SLIT3. If they aren’t, the engineered vessels may not thrive or even fail to grow.

Mesenchymal stem cells injections are being evaluated in clinical trials to see if their can help grow blood vessels and improve heart function in patients who have suffered heart attacks.

So far, the benefits of stem cell injection have been modest, according to Rehman. Evaluating the gene and protein signatures of stem cells from each patient may allow for a more individualized approach so that every patient receives mesenchymal stem cells that are most likely to promote blood vessel growth and cardiac repair. Such pre-testing might substantially improve the efficacy of stem cell treatments for heart patients.

The Mechanism Behind Blood Stem Cell Longevity

The blood stem cells that live in bone marrow divide and send their progeny down various pathways that ultimately produce red cells, white cells and platelets. These “daughter” cells must be produced at a rate of about one million cells per second in order to constantly replenish the body’s blood supply.

A nagging question is how these stem cells to persist for decades even though their progeny last for days, weeks or months before they need to be replaced. A study from the University of Pennsylvania has uncovered one of the mechanisms, and these cellular mechanisms allow these stem cells to keep dividing in perpetuity.

Dennis Discher and his colleagues in the Department of Chemical and Biomolecular Engineering in the School of Engineering and Applied Science found that a form of a protein called “myosin,” the motor protein that allow muscles to contract, helps bone marrow stem cells divide asymmetrically. This asymmetric cell division helps one cell remains a stem cell while the other cell becomes a daughter cell. Discher’s findings might provide new insights into blood cancers, such as leukemia, and eventually lead to ways of growing transfusable blood cells in a laboratory.

The participants in this study were members of the Discher laboratory, which include lead author Jae-Won Shin, Amnon Buxboim, Kyle R. Spinler, Joe Swift, Dave P. Dingal, Irena L. Ivanovska and Florian Rehfeldt. Discher collaborated with researchers at the Univ. de Strasbourg, Lawrence Berkeley National Laboratory and Univ. of California, San Francisco. This paper was published in Cell Stem Cell.

“Your blood cells are constantly getting worn out and replaced,” Discher said. “We want to understand how the stem cells responsible for making these cells can last for decades without being exhausted.”

Presently, scientists understand the near immortality of hematopoietic stem cells (HSCs) as a result of their asymmetric cell division, although how this asymmetric cell division enables stem cell longevity was unknown. To ferret out this mechanism, Discher and his coworkers analyzed all of the genes expressed in the stem cells and compared them with the genes expression in their more rapidly dividing progeny. Those proteins that only went to one side of the dividing cell might play a role in partitioning other key factors responsible for keeping one of the cells a stem cell and the other a progeny cell.

One of the proteins that showed a distinct expression pattern was the motor protein myosin II, which has two forms, myosin A and myosin B. Myosin II is the protein that enables the body’s muscles to contract, but in nonmuscle cells also it used during cell division. During the last phase of cell division, known as cytokinesis, myosin II helps cleave and close off the cell membranes as the cell splits apart.

“We found that the stem cell has both types of myosin,” Shin said, “whereas the final red and white blood cells only had the A form. We inferred that the B form was key to splitting the stem cells in an asymmetric way that kept the B form only in the stem cell.”

With these myosins as their top candidate, Discher and others labeled key proteins in dividing stem cells with different colors and put them under the microscope.

“We could see that the myosin IIB goes to one side of the dividing cell, which causes it to cleave differently,” Discher said. ”It’s like a tug of war, and the side with the B pulls harder and stays a stem cell.”

The researchers then performed in vivo tests using mice that had human stem cells injected into their bone marrow. By genetically inhibiting myosin IIB production, Shin and others saw the stem cells and their early progeny proliferating while the amount of downstream blood cells dropped.

“Because the stem cells were not able to divide asymmetrically, they just kept making more of themselves in the marrow at the expense of the differentiated cells,” Discher said.

HSC cell division mechanism

Discher and his team then used a drug that temporarily blocked both myosin A and myosin B. They observed that myosin inhibition increased the prevalence of non-dividing stem cells, blocking the more rapid division of progeny.

Discher believes that these findings could eventually help regrow blood stem cells after chemotherapy treatments for blood cancers or even grow blood products in the lab. Finding a drug that can temporarily shut down only the B form of myosin, while leaving the A form alone, would allow the stem cells to divide symmetrically and make more of themselves without preventing their progeny from dividing themselves.

“Nonetheless, the currently available drug that blocks both the A and B forms of myosin II could be useful in the clinic,” Shin said, “because donor bone marrow cultures can now easily be enriched for blood stem cells, and those are the cells of interest in transplants. Understanding the forces that stem cells use to divide can thus be exploited to better control these important cells.”