Stem cells at a closer view


Larry H. Bernstein at Pharmaceutical Intelligence reblogged some of my posts. They are shown here. Thanks Larry!! If you want the straight skinny on new and cool things in the pharmaceutical research world, you can do no better than Pharmaceutical Intelligence. I highly recommend it!!

Leaders in Pharmaceutical Business Intelligence (LPBI) Group

Larry H. Bernstein, MD, FCAP, Reporter and Curator

http://pharmaceuticalintelligence.com/2013-12-15/larryhbern/Stem cells at a closer view/

There are two bloggers who have brought a clear vision to the growing importance of Pleuripotential stem cell research, applications, and noted risks.  They are M Buratov and David O’Connell.
I repost  some work that needs more attention.  The technology has improved, and there are a number of successful applications.  The treatment of the cells, and the ability to put them on a stable and nontoxic resorbable matrix is a bioengineering advance.

Growing Skeletal Muscle in the Laboratory

Skeletal muscle – that type of voluntary muscle that allows movement – has proven difficult to grow in the laboratory. While particular cells can be differentiated into skeletal muscle cells, forming a coherent, structurally sound skeletal muscle is a tough nut to crack from a research perspective. Another problem dogging muscle research is the difficulty growing new…

View original post 6,237 more words

Australian Researchers Make A Kidney in the Laboratory With Stem Cells


Stem cell researchers from the University of Queensland in Australia have successfully grown a kidney in the laboratory with stem cells. This new breakthrough will almost certainly open the door to improved treatments for patients with kidney disease, and bodes well for the future of organ bioengineering.

Mini-kidney in dish. (Source: University of Queensland)
Mini-kidney in dish. (Source: University of Queensland)

The principal investigator of this research project, Professor Melissa Little, from University of Queensland’s Institute for Molecular Bioscience (IMB), said that new treatments for kidney disease were urgently needed.

“One in three Australians is at risk of developing chronic kidney disease and the only therapies currently available are kidney transplant and dialysis,” Little said. “Only one in four patients will receive a donated organ, and dialysis is an ongoing and restrictive treatment regime. We need to improve outcomes for patients with this debilitating condition, which costs Australia $1.8 billion a year.”

Little’s research team designed a new step-wise protocol to coax embryonic stem cells to gradually form all the required kidney-specific cell types and to induce them to “self-organize” into a mini-kidney in a dish.  The embryonic stem cell line HES3 was used in this work, which derived by Reubinoff and others in the laboratory of Alan Trounson in 2000.

“During self-organization, different types of cells arrange themselves with respect to each other to create the complex structures that exist within an organ, in this case, the kidney,” Little said. “The fact that such stem cell populations can undergo self-organization in the laboratory bodes well for the future of tissue bioengineering to replace damaged and diseased organs and tissues. It may also act as a powerful tool to identify drug candidates that may be harmful to the kidney before these reach clinical trial.”

Despite the success of this research, Little cautioned that she and other kidney researchers had a great deal of work to do to before this protocol might be ready for human trials. Regardless, it is a very exciting step forward.

The Queensland Minister for Science and Innovation Ian Walker congratulated Little and her co-workers for their advances, and added that biomedical research was crucial in ensuring a healthier future for Queenslanders.

“The work by the IMB research team is an important milestone in developing improved treatments for chronic kidney disease and will ensure those with the condition can continue to live fulfilling and productive lives,” Walker said.

Little’s research team included Dr. Minoru Takasato, Pei Er, Melissa Becroft, Dr. Jessica Vanslambrouck, from IMB, and her collaorators, Professors Andrew Elefanty and Ed Stanley, from the Murdoch Children’s Research Institute and Monash University.

The research is published in the scientific journal Nature Cell Biology and supported by the Queensland Government, the Australian Research Council, as part of the Stem Cells Australia Strategic Research Initiative, and the National Health and Medical Research Council of Australia.