Nanotubules Link Damaged Heart Cells With Mesenchymal Stem Cells to Both of Their Benefit


Mesenchymal stem cells are found throughout the body in bone marrow, fat, tendons, muscle, skin, umbilical cord, and many other tissues. These cells have the capacity to readily differentiate into bone, fat, and cartilage, and can also form smooth muscles under particular conditions.

Several animal studies and clinical trials have demonstrated that mesenchymal stem cells can help heal the heart after a heart attack. Mesenchymal stem cells (MSCs) tend to help the heart by secreting a variety of particular molecules that stimulate heart muscle survival, proliferation, and healing.

Given these mechanisms of healing, is there a better way to get these healing molecules to the heart muscle cells?

A research group from INSERM in Creteil, France has examined the use of tunneling nanotubes to connect MSCs with heart muscle cells. These experiments have revealed something remarkable about MSCs.

Florence Figeac and her colleagues in the laboratory of Ann-Marie Rodriguez used a culture system that grew fat-derived MSCs and with mouse heart muscle cells. They induced damage in the heart muscle cells and then used tunneling nanotubes to connect the fat-based MSCs.

They discovered two things. First of all, the MSCs secreted a variety of healing molecules regardless of their culture situation. However, when the MSCs were co-cultured with damaged heart muscle cells with tunneling nanotubes, the secretion of healing molecules increased. The tunneling nanotubes somehow passed signals from the damaged heart muscle cells to the MSCs and these signals jacked up secretion of healing molecules by the MSCs.

The authors referred to this as “crosstalk” between the fat-derived MSCs and heart muscle cells through the tunneling nanotubes and it altered the secretion of heart protective soluble factors (e.g., VEGF, HGF, SDF-1α, and MCP-3). The increased secretion of these molecules also maximized the ability of these stem cells to promote the growth and formation of new blood vessels and recruit bone marrow stem cells.

After these experiments in cell culture, Figeac and her colleagues used these cells in a living animal. They discovered that the fat-based MSCs did a better job at healing the heart if they were previously co-cultured with heart muscle cells.

Exposure of the MSCs to damaged heart muscle cells jacked up the expression of healing molecules, and therefore, these previous exposures made these MSCs better at healing hearts in comparison to naive MSCs that were not previously exposed to damaged heart muscle.

Thus, these experiments show that crosstalk between MSCs and heart muscle cells, mediated by nanotubes, can optimize heart-based stem cells therapies.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).

2 thoughts on “Nanotubules Link Damaged Heart Cells With Mesenchymal Stem Cells to Both of Their Benefit”

Comments are closed.