Safe and Efficient Cell Reprogramming Inside a Living Animal


Research groups at the University of Manchester, and University College, London, UK, have developed a new technique for reprogramming adult cells into induced pluripotent stem cells that greatly reduces the risk of tumor formation.

Kostas Kostarelos, who is the principal investigator of the Nanomedicine Lab at the University of Manchester said that he and his colleagues have discovered a safe protocol for reprogramming adult cells into induced pluripotent stem cells (iPSCs). Because of their similarities to embryonic stem cells, many scientist hope that iPSCs are a viable to embryonic stem cells.

How did they do it? According to Kostarelos, “We have induced somatic cells within the liver of adult mice to transient behave as pluripotent stem cells,” said Kostarelos. “This was done by transfer for four specific gene, previously described by the Nobel-prize winning Shinya Yamanaka, without the use of viruses but simply plasmid DNA, a small circular, double-stranded piece of DNA used for manipulating gene expression in a cell.”

This technique does not use viruses, which was the technique of choice in Yamanaka’s research to get genes into cells. Viruses like the kind used by Yamanaka, can cause mutations in the cells. Kostarelos’ technique uses no viruses, and therefore, the mutagenic properties of viruses are not an issue.

Kostarelos continued, “One of the central dogmas of this emerging field is that in vivo implantation of (these stem) cells will lead to their uncontrolled differentiation and the formation of a tumor-like mass.”

However, Kostarelos and his team have determined that the technique they designed does not show this risk, unlike the virus-based methods.

“[This is the ] only experimental technique to report the in vivo reprogramming of adult somatic cells to plurpotentcy using nonviral, transient, rapid and safe methods,” said Kostarelos.

Since this approach uses circular plasmid DNA, the tumor risk is quite low, since plasmid DNA is rather short-lived under these conditions. Therefore, the risk of uncontrolled growth is rather low. While large volumes of plasmid DNA are required to reprogram these cells, the technique appears to be rather safe in laboratory animals.

Also, after a burst of expression of the reprogramming factors, the expression of these genes decreased after several days. Furthermore, the cells that were reprogrammed differentiated into the surrounding tissues (in this case, liver cells). There were no signs in any of the laboratory animals of tumors or liver dysfunction.

This is a remarkable proof-of-principle experiment that shows that reprogramming cells in a living body is fast and efficient and safe.

A great deal more work is necessary in order to show that such a technique can use useful for regenerative medicine, but it is certainly a glorious start.

 

Also involved in this paper were r, , and .

Stem Cells Treat Babies With Brittle Bone Disease While Still in the Womb


A new study published by the journal STEM CELLS Translational Medicine shows that stem cells can be effective in treating brittle bone disease, a debilitating and sometimes lethal genetic disorder.

Also known as osteogenesis imperfecta (OI), this genetic disorder was popularized by actor Samuel T. Jackson in the Bruce Willis movie “Unbreakable.” OI is characterized by fragile bones that cause patients to suffer hundreds of fractures over the course of a lifetime. According to the OI Foundation, other symptoms include muscle weakness, hearing loss, fatigue, joint laxity, curved bones, scoliosis, brittle teeth and short stature. In the more severe cases of OI, restrictive pulmonary disease also occurs. Unfortunately, to date no cure exists for OI.

Physicians use ultrasound to detect OI in babies before they are born. In this study, an international research team treated two patients for the disease with mesenchymal stem cells (MSCs) while the infants were still in the womb. After they were born, the babies were given additional mesenchymal stem cell treatments.

“We had previously reported on the prenatal transplantation for the patient with OI type III, which is the most severe form in children who survive the neonatal period,”said Cecilia Götherström, Ph.D., of the Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden. She and Jerry Chan, M.D., Ph.D., of the Yong Loo Lin School of Medicine and National University of Singapore, and KK Women’s and Children’s Hospital, led the study that also included colleagues from the United States, Canada, Taiwan and Australia.

“The first eight years after the prenatal transplant, our patient did well and grew at an acceptable rate. However, she then began to experience multiple complications, including fractures, scoliosis and reduction in growth, so the decision was made to give her another MSC infusion. In the two years since, she has not suffered any more fractures and improved her growth. She was even able to start dance classes, increase her participation in gymnastics at school and play modified indoor hockey,”Dr. Götherström added.

The second child suffered from a milder form of OI and received a stem cell transfusion 31 weeks into gestation and did not suffer any new fractures for the remainder of the pregnancy or during infancy. She followed her normal growth pattern — just under the third percentile in height, but when she was 13 months old, she stopped growing. Six months later, the doctors gave her another infusion of stem cells and she resumed growing at her previous rate.

“Our findings suggest that prenatal transplantation of autologous stem cells in OI appears safe and is of likely clinical benefit and that re-transplantation with same-donor cells is feasible. However, the limited experience to date means that it is not possible to be conclusive, for which further studies are required,”Dr. Chan said.

“Although the findings are preliminary, this report is encouraging in suggesting that prenatal transplantation may be a safe and effective treatment for this condition,”said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine.