Three New Clinical Trials Examine Bone Marrow-Based Stem Cells To Treat Heart Failure


In April of 2013, the results of three clinical trials that examined the effects of bone marrow-derived stem cell treatments in patients with acute myocardial infarction (translation – a recent heart attack) or chronic heart failure. These trials were the SWISS-AMI trial, the CELLWAVE trial, and the C-CURE trial.

The SWISS-AMI trial (Circulation. 2013;127:1968-1979), which stands for the Swiss Multicenter Intracoronary Stem Cells Study in Acute Myocardial Infarction trial, was designed to examine the optimal time of stem cell administration at 2 different time points: early or 5 to 7 days versus late or 3 to 4 weeks after a heart attack. This trial is an extension of the large REPAIR-AMI, which showed that patients who tended to receive bone marrow stem cell treatments later rather than earlier had more pronounced therapeutic effects from the stem cell treatments.

SWISS-AMI examined 60 patients who received standard cardiological care after a heart attack, 58 who received bone marrow stem cells 5-7 days after a heart attack, and 49 patients who received bone marrow stem cells 3-4 weeks after their heart attacks. All stem cells were delivered through the coronary arteries by means of the same technology used to deliver a stent.

When the heart function of all three groups were analyzed, no significant differences between the three groups were observed. Those who received stem cell 5-7 days after a heart attack showed a 1.8% increase in their ejection fractions (the percentage of blood that is ejected from the ventricle with each beat) versus an average decrease of 0.4% in those who received standard care, and a 0.8% increase in those who received their stem cells 3-4 weeks after a heart attack. If these results sound underwhelming it is because they are. The standard deviations of each group so massive that these three groups essentially overlap each other. The differences are not significant from a statistical perspective. Thus the results of this study were definitely negative.

The second study, CELLWAVE (JAMA, April 17, 2013—Vol 309, No. 15, 1622-1631), was a double-blinded, placebo-controlled study conducted among heart attack patients between 2005 and 2011 at Goethe University Frankfurt, Germany. In this study, the damaged area of heart was pretreated with low-energy ultrasound shock waves, after which patients in each group were treated with either low dose stem cells, high-dose stem cells, or placebo. Patients also received either shock wave treatment or placebo shock wave treatment. Thus this was a very well-controlled study. Stem cells were administered through the coronary arteries, just as in the case of the SWISS-AMI study.

The results were clearly positive in this study. The stem cell + shock wave treatment groups showed definite increases in heart function above the placebo groups, and showed fewer adverse effects. The shock wave treatments seem to prime the heart tissue to receive the stem cells. The shock waves induce the release of cardiac stromal-derived factor-1, which is a potent chemoattractor of stem cells.  This is an intriguing procedure that deserves more study.

The third study, C-CURE, is definitely the most interesting of the three (Bartunek et al. JACC Vol. 61, No. 23, June 11, 2013:2329–38). In this trial, mesenchymal stromal cells (MSCs) were isolated from bone marrow and primed with a cocktail of chemicals that pushed the stem cells towards a heart muscle fate. Then the cells were transplanted into the heart by direct injection into the heart muscle as guided by NOGA three-dimensional imaging of the heart.

After initially screening 320 patients with chronic heart failure, 15 were treated with standard care and the other 32 received the stem cell treatment. After a two-year follow-up, the results were remarkable: those who received the stem cell treatment showed an average 7% increase in ejection fraction versus 0.2% for receiving standard care, an almost 25 milliliter reduction in end systolic volume (measures degree of dilation of ventricle – not a good thing and the fact that it decreased is a very good thing) versus a 9 milliliter decrease for those receiving standard care, and were able to walk 62 meters further in 6 minutes as opposed to standard care group who walked 18 meters less in 6 minutes.

While these studies do not provide definitive answers to the bone marrow/heart treatment debate, they do extend the debate. Clearly bone marrow stem cells help some patients and do not help others. The difference between these two groups of patients continues to elude researchers. Also, how the bone marrow is processed is definitely important. When the cells are administered also seems to be important, but the exact time slot is not clear in human patients. It is also possible that some patients have poor quality bone marrow in the first place, and might be better served by allogeneic (someone else’s stem cells) treatments rather than autologous (the patient’s own stem cells) stem cell treatments.

Also, stem cell treatments for heart patients will probably need to be more sophisticated if they are to provide greater levels of healing. Heart muscle cells are required, but so are blood vessels to feed the new heart muscle. If mesenchymal stem cells work by activating resident heart stem cells, then maybe mesenchymal transplants should be accompanied by endothelial progenitor cell transplants (CD117+, CD45+ CD31+ cells from bone marrow) to provide the blood vessels necessary to replace the clogged blood vessels and the new heart muscle that is grown.

Prostaglandin E Switches Endoderm Cells From Pancreas to Liver


The gastrointestinal tract initially forms as a tube inside the embryo. Accessory digestive organs sprout from this tube in response to inductive signals from the surrounding mesoderm. Both the pancreas and the liver form at about the same time (4th week after fertilization) and at about the same place in the embryonic gut (the junction between the foregut and the midgut).

Pancreatic development

The pancreas forms as ventral and dorsal outgrowths that eventually fuse together when the gut rotates. The liver forms from the “hepatic diverticulum” that grows from the gut about 23-26 days after fertilization. These liver bud cells work with surrounding tissues to form the liver.

Liver development

What determines whether an endodermal cell becomes a liver or pancreatic precursor cell?

Wolfram Goessling and Trista North from the Harvard Stem Cell Institute (HSCI) have identified a gradient of the molecule prostaglandin E (PGE) in zebrafish embryos that acts as a liver/pancreas switch.

Postdoctoral researcher Sahar Nissim in the Goessling laboratory has uncovered how PGE toggles endodermal cells between the liver-pancreas fate. Nissim has shown that endodermal cells exposed to more PGE become liver cells and those exposed to less PGE become pancreas. This is the first time that prostaglandins have been reported as the factor that can switch cell identities from one fate to another.

After completing these experiments, HSCI scientists collaborated with colleague Richard Mass to determine if their PGE-mediated cell fate switch also occurred in mammals. Here again, Richard Sherwood from the Mass established that mouse endodermal cells became liver if exposed to PGE and pancreas if exposed to less PGE.  Sherwood also demonstrated that PGE enhanced liver growth and regeneration.

Goessling become interested in PGE in 2005, when a chemical screen identified PGE as an agent that amplified blood stem cell populations in zebrafish embryos. Goessling that transitioned this work to human patients, and a phase 1b clinical trial that uses PGE to increase umbilical cord blood transplants has just been completed.

PGE might be useful for instructing pluripotent human stem cells that have been differentiated into endodermal cells to form completely functional, mature liver cells that can be used to treatment patients with liver disease.

Repopulation of Damaged Livers With Skin-Derived Stem Cells


Patients with severe liver disease must receive a liver transplant. This major procedure requires that the patient survives major surgery and then takes anti-rejection drugs for the rest of their lives. In general, liver transplant patients tend to fair pretty well. The one-year survival rate of liver transplant patients approaches 90% (see O’Mahony and Goss, Texas Heart Institute Journal 2012 39(6): 874-875).

A potentially better way to treat liver failure patients would be to take their own liver cells, convert them into induced pluripotent stem cells (iPSCs), differentiate them into liver cells, and use these liver cells to regenerate the patient’s liver. Such a treatment would contain a patient’s own liver cells and would not require anti-rejection drugs.

Induced pluripotent stem cells or iPSCs are made from genetically-engineered adult cells that have had four specific genes (Oct4, Klf4, Sox2, and c-Myc) introduced into them. As a result of the heightened expression of these genes, some of the adult cells dedifferentiate and are reprogrammed into cells that resemble embryonic stem cells. Normally, this procedure is relatively inefficient, slow, and induces new mutations into the engineered cells. Also, when iPSCs are differentiated into liver cells (hepatocytes), they do not adequately proliferate after differentiation, and they also fail to properly function the way adult hepatocytes do.

New work from laboratories at the University of California, San Francisco (UCSF), has differentiated human hepatocytes by means of a modified technique that bypasses the pluripotency stage. These cells were then used to repopulate mouse livers.

“I really like this paper. It’s a step forward in the field,” said Alejandro Soto-Gutiérrez, assistant professor of pathology at the University of Pittsburgh, who was not involved in the work. “The concept is reprogramming, but with a shortcut, which is really cool.”

Research teams led by Holger Willenbring and Sheng Ding isolated human skin cells called fibroblasts and infected them with engineered viruses that forced the expression of three genes: OCT4, SOX2, and KLF4. These transduced cells were grown in culture in the presence of proteins called growth factors and small molecules in order to induce reprogramming of the cells into the primary embryonic germ layer known as endoderm. In the embryo, the endoderm is the inner-most layer of cells that forms the gastrointestinal tract and its associated structures (liver, pancreas, and so on). Therefore, the differentiation of adult cells into endodermal progenitor cells provides a handy way to form a cell type that readily divides and can differentiate into liver cells.

“We divert the cells on their path to pluripotency,” explained coauthor Holger Willenbring, associate professor of surgery at UCSF. “We still take advantage of what is intrinsic to reprogramming, that the cells are becoming very plastic; they’ve become flexible in what kind of cell type they can be directed towards.”

The authors called these cells induced multipotent progenitor cells (iMPCs). The iMPCs were easily differentiated into endodermal progenitor cells (iMPC-EPCs). These iMPC-EPCs were grown in culture with a cocktail of small molecules and growth factors to increase iMPC-EPC colony size while concomitantly maintain them in an endodermal state. Afterwards, Willenbring and others cultured these cells with factors and small molecules known to promote liver cell differentiation. When these iMPC-Hepatocytes (Heps) were transplanted into mice with damaged livers, the iMPC-Hep cells continued to divide at least nine months after transplantation. Furthermore, the transplanted cells matured and displayed gene expression profiles very similar to that of typical adult hepatocytes. Transplantation of iMPC-Heps also improved the survival of a mouse model of chronic liver failure about as well as did transplantation of adult hepatocytes.

“It is a breakthrough for us because it’s the first time that we’ve seen a cell that can actually repopulate a mouse’s liver,” said Willenbring. Willenbring strongly suspects that iMPCs are better able to repopulate the liver because the derivation of iMPC—rather than an iPSC—eliminates some steps along the path to generating hepatocytes. These iMPCs also possess the ability to proliferate in culture to generate sufficient quantities of cells for therapeutic purposes and, additionally, can functionally mature while retaining that proliferative ability to proliferate. Both of these features are important prerequisites for therapeutic applications, according to Willenbring.

Before this technique can enter clinical trials, more work must be done. For example: “The key to all of this is trying to generate cells that are identical to adult liver cells,” said Stephen Duncan, a professor of cell biology at Medical College of Wisconsin, who was not involved in the study. “You really need these cells to take on all of the functions of a normal liver cell.” Duncan explained that liver cells taken directly from a human adult might be able to repopulate the liver in this same mouse model at levels close to 90 percent.

Willenbring and his colleagues observed repopulation levels of 2 percent by iMPC-Heps, which is substantially better than the 0.05 percent repopulation typically accomplished by hepatocytes derived from iPSCs or embryonic stem cells. However: “As good as this is, the field will need greater levels of expansion,” said Ken Zaret of the Institute for Regenerative Medicine at the University of Pennsylvania, who did not participate in the work. “But the question is: What is limiting the proliferative capacity of the cells?”

Zaret explained that it is not yet clear whether some aspect of how the cells were programmed that differed from how they normally develop could have an impact on how well the population expands after transplantation. “There still is a ways to go [sic],” he said, “but [the authors] were able to show much better long-term repopulation with human cells in the mouse model than other groups have.”

See S. Zhu et al., “Mouse liver repopulation with hepatocytes generated from human fibroblasts,” Nature, doi:10.1038/nature13020, 2014.

Sweat Glands Are A Source of Stem Cells for Wound Healing


Stem Cells from human sweat glands serve as a remarkable source for wound healing treatments according to a laboratory in Lübeck, Germany.

Professor Charli Kruse, who serves as the head of the Fraunhofer Research Institute for Marine Biotechnology EMB, Lübeck, Germany, and his colleagues isolated cultured pancreatic cells in the course of their research to look into the function of a protein called Vigilin. When the pancreatic cells were grown in culture, they produced, in addition to other pancreatic cells, nerve and muscle cells. Thus the pancreas contains a stem cell population that can differentiate into different cell types.

Kruse and his group decided to investigate other glands contained a similar stem cell population that could differentiate into other cell types.

Kruse explained: “We worked our way outward from the internal organs until we got to the skin and the sweat glands. Again, this yielded the same result: a Petri dish full of stem cells.”

Up to this point, sweat glands have not received much attention from researchers. Mice and rats only have sweat glands on their paws, which makes them rather inaccessible. Human beings, on the other hand, have up to three million sweat glands, predominantly on the soles of out feet, palms of the hand, armpits, and forehead.

Ideally, a patient could have stem cells taken from her own body to heal an injury, wound, or burn, Getting to these endogenous stem cell populations, however, represents a challenge, since it requires bone marrow biopsies or aspirations, liposuction, or some other invasive procedure.

Sweat glands, however, are significantly easier to find, and a short inpatient visit to your dermatologist that extracts three millimeters of underarm skin could provide enough stem cells to grow in culture for treatments.

Stem cells from sweat glands have the capacity to aid wound healing. Kruse and his group used sweat gland-based stem cells in laboratory animals. The Kruse group used skin biopsies from human volunteers and separated out the sweat gland tissues under a dissecting scope. Then the sweat gland stem cells were grown in culture and induced to differentiate into a whole host of distinct cell types.

Then Kruse’s team grew these sweat gland stem cells in a skin-like substrate that were applied to wounds on the backs of laboratory animals. Those animals that had received stem cell applications healed faster than those that received no stem cells.

If the stem cells were applied to the mice with the artificial substrate, the cells moved into the bloodstream and migrated away from the site of the injury. In order to help heal the wound the cells had to integrate into the skin and participate in the healing process.

“Not only are stem cells from sweat glands easy to cultivate, they are extremely versatile, too,” said Kruse.

Kruse and his team are already in the process of testing a treatment for macular degeneration using sweat gland-based stem cells. “In the long-term, we could possibly set up a cell bank for young people to store stem cells from their own sweat glands/ They would then be available for use should the person need new cells, following an illness,l perhaps, or in the event of an accident,” Kruse said.

Reversing Lung Diseases By Directing Stem Cell Differentiation


Lung diseases can scar the respiratory tissues necessary for oxygen exchange. Without proper oxygen exchange, our cells lack the means to make the energy they so desperately need, and they begin to shut down or even die. Lung diseases such as asthma, emphysema, chronic obstructive pulmonary disease and others can permanently diminish lung capacity, life expectancy and activity levels.

Fortunately, a preclinical study in laboratory animals has suggested a new strategy for treating lung diseases. Carla Kim and Joo-Hyeon Lee of the Stem Cell Research Program at Boston Children’s have described a new lung-specific pathway that is activated by lung injury and directs a resident stem cell population in the lung to proliferate and differentiate into lung-specific cell types.

When Kim and Lee enhanced this pathway in mice, they observed increase production of the cells that line the alveolar sacs where gas exchange occurs. Alveolar cells are irreversibly damaged in emphysema and pulmonary fibrosis.

Inhibition of this same pathway increased stem cell-mediated production of airway epithelial cells, which line the passages that conduct air to the alveolar sacs and are damaged in asthma and bronchiolitis obliterans.

For their experiments, Kim and Lee used a novel culture system called a 3D culture system that mimics the milieu of the lung. This culture system showed that a single bronchioalveolar stem cell could differentiate into both alveolar and bronchiolar epithelial cells. By adding a protein called TSP-1 (thrombospondin-1), the stem cells differentiated into alveolar cells.

Next, Kim and Lee utilized a mouse model of pulmonary fibrosis. However, when they cultured the small endothelial cells that line the many small blood vessels in the lung, which naturally produce TSP-1, and directly injected the culture fluid of these cells into the mice, the noticed these injections reverse the lung damage.

When they used lung endothelial cells that do not produce TSP-1 in 3D cultures, lung-specific stem cells produce more airway cells. in mice that were engineered to not express TSP-1, airway repair was enhanced after lung injury.

Lung Stem Cell Repair of Lung Damage

Lee explained his results in this way: “When the lung cells are injured, there seems to be a cross talk between the damaged cells, the lung endothelial cells and the stem cells.”

Kim added: “We think that lung endothelial cells produce a lot of repair factors besides TSP-1. We want to find all these molecules, which could provide additional therapeutic targets.”

Even though this work is preclinical in nature, it represents a remarkable way to address the lung damage that debilitates so many people. Hopefully this work is easily translatable to human patients and clinical trials will be in the future. Before that, more confirmation of the role of TSP-1 is required.

A Molecular Switch that Determines Stem Cell Or Neuron


A University of California, San Diego School of Medicine research team has provided new information about a well-known protein that provides the switch for cells to become neurons. This protein is part of a regulatory circuit that can push an immature neural cell to become a functional neuron.

Postdoctoral fellow Chih-Hong Lou and his colleagues worked with principal investigator Miles F. Wilkinson, who is a professor in the Department of Reproductive Medicine, and is also a member of the UC San Diego Institute for Genomic Medicine. These data were published in the February 13 online issue of the journal Cell Reports. These data may also elucidate a still poorly understood process – neuron specification – and might significantly accelerate the development of new therapies for specific neurological disorders, such as autism and schizophrenia.

Wilkinson, Lou and others discovered that the conversion of immature cells to neurons is controlled by a protein called UPF1. UPF1 works in a pathway called the “nonsense-mediated RNA decay” or NMD pathway. The NMD pathway provides a quality control mechanism that eliminates faulty messenger RNA (mRNA) molecules.

mRNA molecules are synthesized from DNA in the nucleus of cells and are exported to the cytoplasm where they are translated by ribosomes into protein. All proteins are encoded by stretches of DNA known as genes and the synthesis of an RNA copy of this stretch of DNA is called transcription. After the transcription of a messenger RNA molecule, is goes to the cytoplasm and is used as the template for the synthesis of a specific protein. Occasionally, mistakes are made in the transcription of mRNAs, and such aberrant mRNAs will either be translated into junk protein, or are so damaged that they cannot be recognized by ribosomes. Such junk mRNAs will gum up the protein synthesis machinery, but cells have the NMD pathway that degrades junk mRNAs to prevent the collapse of the protein synthesis machinery.

UPF1 mechanism

A second function for the NMD pathway is to degrade a specific group of normal mRNAs to prevent the production of particular proteins. This NMD function is physiologically important, but until now it had not been clear why it is important.

Wilkinson and others have discovered that UPF1, in combination with a particular class of microRNAs, acts as a molecular switch to determine when immature (non-functional) neural cells take the plunge and differentiate into non-dividing (functional) neurons. In particular, UPF1 directs the degradation of a specific mRNA that encodes for a protein in the TGF-beta signaling pathway, which promotes neural differentiation. The destruction of this mRNA prevents the proper functioning of the TGF-beta signaling pathway and neural differentiation fails to occur. Therefore, Wilkinson, Lou and co-workers identified, for the first time, a molecular pathway in which NMD drives a normal biological response.

NMD also promotes the decay of mRNAs that encode proliferation inhibitors, which Wilkinson said might explain why NMD stimulates the proliferative state characteristic of stem cells. There are many potential clinical ramifications for these findings,” Wilkinson said. “One is that by promoting the stem-like state, NMD may be useful for reprogramming differentiated cells into stem cells more efficiently.

Wilkinson continued: “Another implication follows from the finding that NMD is vital to the normal development of the brain in diverse species, including humans. Humans with deficiencies in NMD have intellectual disability and often also have schizophrenia and autism. Therapies to enhance NMD in affected individuals could be useful in restoring the correct balance of stem cells and differentiated neurons and thereby help restore normal brain function.”

Co-authors on this paper include Ada Shao, Eleen Y. Shum, Josh L. Espinoza and Rachid Karam, from the UCSD Department of Reproductive Medicine; and Lulu Huang, from Isis Pharmaceuticals.

Funding for this research came, in part, from National Institutes of Health (grant GM-58595) and the California Institute for Regenerative Medicine.

Results of STAP Cell Paper Questioned


Reports of Stimulus-Triggered Acquisition of Pluripotency or STAP cells has rocked the stem cell world. If adult cells can be converted into pluripotent stem cells so easily, then perhaps personalized, custom stem cells for each patient are just around the corner.

However, the RIKEN institute, which was heavily involved in the research that brought STAP cells to the world has now opened an investigation into this research, since leading scientists have voiced discrepancies about some of the figures in the paper and others have failed to reproduce the results in the paper.

Last week, Friday (February 14, 2014, spokespersons for the RIKEN centre, which is in Kobe, Japan, announced that the institute is looking into alleged irregularities in the work of biologist Haruko Obokata, who works at the institution. Obokata was the lead author listed on two papers that were published in the international journal Nature. These papers (Obokata, H. et al. Nature 505, 641–647 (2014), and Obokata, H. et al. Nature 505, 676–680 (2014) described a rather simple protocol for deriving pluripotent stem cells from adult mouse cells by exposing them to acidic conditions, other types of stresses such as physical pressure on cell membranes. The cells, according to these two publications, had virtually all the characteristics of mouse embryonic stem cells, but had the added ability to form placental structures, which is an ability that embryonic stem cells do not have. The investigation initiated by the RIKEN centre comes at the behest of scientists who have noticed that some of the images used in these papers might have been duplicated from other papers. Also, several scientists have notes that they have been unable, to date, to replicate her results.

These concerns came to a head last week when the science blog PubPeer, and others, noted some problems in these two Nature papers and in an earlier paper from 2011. Obokata is also the first author of this 2011 paper (Obokata, H. et al. Tissue Eng. Part A 17, 607–15 (2011), and this paper contains a figure that seems to have been used for one of the figures in the 2014 paper. Also, there is another figure duplication.

Harvard Medical School anesthesiologist Charles Vacanti who was the corresponding author of one of the Nature papers has said that has learned last week about a data mix up in the paper and has contacted the journal to request a correction. “It certainly appears to have been an honest mistake [that] did not affect any of the data, the conclusions or any other component of the paper,” says Vacanti. Note that Vacanti is a co-author on both papers and a corresponding author on one of them.

In the other paper, Obokata serves as the corresponding author and this paper contains an image of two placentas that appear to be very similar. Teruhiko Wakayama works at Yamanashi University in Yamanashi prefecture, and he is a co-author on both of these papers. According to Wakayama, he sent more than a hundred images to Obokata and suggests that there was confusion over which to use. He says he is now looking into the problem.

Additionally, ten prominent stem-cell scientists have been unable to repeat Obokata’s results. One particular blog listed eight failures from scientists in the field. However, most of those attempts did not use the same types of cells that Obokata used.

Some scientists think that this could simply be a case of experienced scientists working with a system that they know very well and can manipulate easily, unlike outsiders to this same laboratory. For example, Qi Zhou, a cloning expert at the Institute of Zoology in Beijing, who says most of his mouse cells died after treatment with acid, says that “setting up the system is tricky; as an easy experiment in an experienced lab can be extremely difficult to others, I won’t comment on the authenticity of the work only based on the reproducibility of the technique in my lab,” says Zhou.

However, others are more deeply concerned. For example, Jacob Hanna, a stem-cell biologist at the Weizmann Institute of Science in Rehovot, Israel, however, says “we should all be cautious not to persecute novel findings” but that he is “extremely concerned and sceptical”. He plans to try for about two months before giving up.

It could be that the protocol is far more complicated that thought. For example, even Wakayama has been having trouble reproducing the results. To be sure, Wakayama and a student of his were able to replicate the experiment independently before publication, but only after being coached by Obokata. But since he moved to Yamanashi, he has had no luck. “It looks like an easy technique — just add acid — but it’s not that easy,” he says.

Wakayama says that his own success in replicating Obokata’s results has convinced him that her technique works. “I did it and found it myself,” he says. “I know the results are absolutely true.”

Clearly one way to clear this up is for the authors of this groundbreaking paper to publish a detailed protocol on how to make STAP cells. This should clear up any problems with the papers. Vacanti says he has had no problem repeating the experiment and says he will let Obokata supply the protocol “to avoid any potential for variation that could lead to confusion”.

The journal Nature has said that there are aware of the problems with the papers and looking into the matter.

For now, that’s where the issue sits. Frustrating I know, but until we know more we will have to just “wait and see.”