A Molecular Switch that Determines Stem Cell Or Neuron


A University of California, San Diego School of Medicine research team has provided new information about a well-known protein that provides the switch for cells to become neurons. This protein is part of a regulatory circuit that can push an immature neural cell to become a functional neuron.

Postdoctoral fellow Chih-Hong Lou and his colleagues worked with principal investigator Miles F. Wilkinson, who is a professor in the Department of Reproductive Medicine, and is also a member of the UC San Diego Institute for Genomic Medicine. These data were published in the February 13 online issue of the journal Cell Reports. These data may also elucidate a still poorly understood process – neuron specification – and might significantly accelerate the development of new therapies for specific neurological disorders, such as autism and schizophrenia.

Wilkinson, Lou and others discovered that the conversion of immature cells to neurons is controlled by a protein called UPF1. UPF1 works in a pathway called the “nonsense-mediated RNA decay” or NMD pathway. The NMD pathway provides a quality control mechanism that eliminates faulty messenger RNA (mRNA) molecules.

mRNA molecules are synthesized from DNA in the nucleus of cells and are exported to the cytoplasm where they are translated by ribosomes into protein. All proteins are encoded by stretches of DNA known as genes and the synthesis of an RNA copy of this stretch of DNA is called transcription. After the transcription of a messenger RNA molecule, is goes to the cytoplasm and is used as the template for the synthesis of a specific protein. Occasionally, mistakes are made in the transcription of mRNAs, and such aberrant mRNAs will either be translated into junk protein, or are so damaged that they cannot be recognized by ribosomes. Such junk mRNAs will gum up the protein synthesis machinery, but cells have the NMD pathway that degrades junk mRNAs to prevent the collapse of the protein synthesis machinery.

UPF1 mechanism

A second function for the NMD pathway is to degrade a specific group of normal mRNAs to prevent the production of particular proteins. This NMD function is physiologically important, but until now it had not been clear why it is important.

Wilkinson and others have discovered that UPF1, in combination with a particular class of microRNAs, acts as a molecular switch to determine when immature (non-functional) neural cells take the plunge and differentiate into non-dividing (functional) neurons. In particular, UPF1 directs the degradation of a specific mRNA that encodes for a protein in the TGF-beta signaling pathway, which promotes neural differentiation. The destruction of this mRNA prevents the proper functioning of the TGF-beta signaling pathway and neural differentiation fails to occur. Therefore, Wilkinson, Lou and co-workers identified, for the first time, a molecular pathway in which NMD drives a normal biological response.

NMD also promotes the decay of mRNAs that encode proliferation inhibitors, which Wilkinson said might explain why NMD stimulates the proliferative state characteristic of stem cells. There are many potential clinical ramifications for these findings,” Wilkinson said. “One is that by promoting the stem-like state, NMD may be useful for reprogramming differentiated cells into stem cells more efficiently.

Wilkinson continued: “Another implication follows from the finding that NMD is vital to the normal development of the brain in diverse species, including humans. Humans with deficiencies in NMD have intellectual disability and often also have schizophrenia and autism. Therapies to enhance NMD in affected individuals could be useful in restoring the correct balance of stem cells and differentiated neurons and thereby help restore normal brain function.”

Co-authors on this paper include Ada Shao, Eleen Y. Shum, Josh L. Espinoza and Rachid Karam, from the UCSD Department of Reproductive Medicine; and Lulu Huang, from Isis Pharmaceuticals.

Funding for this research came, in part, from National Institutes of Health (grant GM-58595) and the California Institute for Regenerative Medicine.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).

One thought on “A Molecular Switch that Determines Stem Cell Or Neuron”

Comments are closed.