UC Davis Stem Cell Scientists Make Bladder Cells from Pluripotent Stem Cells


Patients who suffer from malformation of the spinal cord or have suffered a severe spinal cord injury sometimes have bladder malfunction as well. Replacing a poorly functioning bladder is a goal of regenerative medicine, but it is not an easy goal. The bladder is lined with a special cell population called “urothelium.” Urothelium is found throughout the urinary tract and it is highly elastic. Persuading stem cells to form a proper urothelium has proved difficult.

Urothelium
From http://ocw.tufts.edu/data/4/221158/221174_xlarge.jpg

Now scientists from the University of California, Davis (my alma mater), have succeeded in devising a protocol for differentiating human pluripotent stem cells into urothelium. The laboratory of Eric Kurzock, chief of the division of pediatric urologic surgery at UC Davis Children’s Hospital, published this work in the journal Stem Cells Translational Medicine. This work is quite exciting, since it provides a way to potentially replace bladder tissue for patients whose bladders are too small or do not function properly.

Kurzock explained: “Our goal is to use human stem cells to regenerate tissue in the lab that can be transplanted into patients to augment or replace their malfunctioning bladders,”

In order to make bladder cells in the laboratory, Kurzrock and his coworkers used two different types of human pluripotent stem cells. First, they used two types of induced pluripotent stem cells (iPS cells). The first came from laboratory cultures of human skin cells that were genetically engineered and cultured to form iPS cultures. The second iPS line was derived from umbilical cord blood cells that had been genetically reprogrammed into an embryonic stem cell-like state.

Even though further work is needed to establish that bladder tissues made from such stem cells are safe or effective for human patients, Kurzrock thinks that iPS cell–derived bladder grafts made from a from a patient’s own skin or umbilical cord blood cells represent the ideal tissue source for regenerative bladder treatments. This type of tissue would be optimal, he said, because it lowers the risk of immunological rejection that typifies most transplants.

One of the truly milestone developments in this research is the protocol Kurzrock and his colleagues developed to direct pluripotent stem cells to differentiate into bladder cells. This protocol was efficient and, most importantly, allowed the stem cells to proliferate in culture over a long period of time. This is crucial in order to have enough material for therapeutic purposes.

“What’s exciting about this discovery is that it also opens up an array of opportunities using pluripotent cells,” said Jan Nolta, professor and director of the UC Davis Stem Cell program and a co-author on the new study. “When we can reliably direct and differentiate pluripotent stem cells, we have more options to develop new and effective regenerative medicine therapies. The protocols we used to create bladder tissue also provide insight into other types of tissue regeneration.”

To hone their urothelium-differentiation protocol, Kurzrock and his colleagues used human embryonic stem cells obtained from the National Institutes of Health’s human stem cell repository. These cells were successfully differentiated into bladder cells. Afterwards, the Kurzrock group used the same protocol to coax iPS cells made from skin and umbilical cord blood into urothelium. Not only did these cells look like urothelium, but they also expressed the protein “uroplakin,” which is unique to the bladder and helps make it impermeable to toxins in urine.

In order to bring this protocol to the clinic, the cells must proliferate, differentiate and express bladder-specific proteins without depending on any animal or human products. They must do all these things independent of signals from other human cells, said Kurzrock. Therefore, for future research, Kurzrock and his colleagues plan to modify their laboratory cultures so that they will not require any animal and human products, which will allow use of the cells in patients.

Kurzrock’s primary goal as a physician is with children who suffer from spina bifida and other pediatric congenital disorders. Currently, when he surgically reconstructs a child’s defective bladder, he must use a segment of their own intestine. Because the function of intestine, which absorbs food, is almost the opposite of bladder, bladder reconstruction with intestinal tissue may lead to serious complications, including urinary stone formation, electrolyte abnormalities and cancer. According to Kurzrock, developing a stem cell alternative not only will be less invasive, but should prove to be more effective, too, he said.

Another patient group who might benefit from this research is bladder cancer patients. More than 70,000 Americans each year are diagnosed with bladder cancer, according to the National Cancer Institute. “Our study may provide important data for basic research in determining the deviations from normal biological processes that trigger malignancies in developing bladder cells,” said Nolta. More than 90 percent of patients who need replacement bladder tissue are adults with bladder cancer. Kurzrock said “cells from these patients’ bladders cannot be used to generate tissue grafts because the implanted tissue could carry a high risk of becoming cancerous. On the other hand, using bladder cells derived from patients’ skin may alleviate that risk. Our next experiments will seek to prove that these cells are safer.”

Umbilical Cord Blood Cells Combined with Growth Factors Improves Traumatic Brain Injury Outcomes


Approximately 2 million Americans experience a traumatic brain injury every year. Most of these are individuals who employed in high-risk jobs such as the military, firefighting, police work and others types of essential but highly dangerous jobs. No matter how small the injury, individuals who have suffered a traumatic brain injury (TBI) can suffer from a whole host of motor, behavioral, intellectual and cognitive disabilities over the short or long-term. Unfortunately, there are few clinical treatments for TBI, and the few we have are rather ineffective.

In order to design better, more effective treatments for TBI, neuroscientists at the Center of Excellence for Aging and Brain Repair, Department of Neurosurgery in the USF Health Morsani College of Medicine, University of South Florida, have used umbilical cord stem cells in combination with growth factors to treat TBIs in mice.

This study investigated the ability of several strategies, both by themselves and in combination with other therapies, to treat rats with a laboratory form of TBI. In particular, the USF team discovered that a combination of human umbilical cord blood cells (hUBCs) and granulocyte colony stimulating factor (G-CSF), a growth factor, was more therapeutic than either administered alone, or each with saline, or saline alone.

“Chronic TBI is typically associated with major secondary molecular injuries, including chronic neuroinflammation, which not only contribute to the death of neuronal cells in the central nervous system, but also impede any natural repair mechanism,” said study lead author Cesar V. Borlongan, PhD, professor of neurosurgery and director of USF’s Center of Excellence for Aging and Brain Repair. “In our study, we used hUBCs and G-CSF alone and in combination. In previous studies, hUBCs have been shown to suppress inflammation, and G-CSF is currently being investigated as a potential therapeutic agent for patients with stroke or Alzheimer’s disease.”

In previous studies, Borlongan and his team showed that G-CSF can mobilize stem cells from bone marrow and induce them to home to and infiltrate injured tissues. While there, the cells promote neural cell self-repair. Cells from human umbilical cord blood also have the ability to suppress inflammation and promote cell growth.

“Our results showed that the combined therapy of hUBCs and G-CSF significantly reduced the TBI-induced loss of neuronal cells in the hippocampus,” said Borlongan. “Therapy with hUBCs and G-CSF alone or in combination produced beneficial results in animals with experimental TBI. G-CSF alone produced only short-lived benefits, while hUBCs alone afforded more robust and stable improvements. However, their combination offered the best motor improvement in the laboratory animals.”

“This outcome may indicate that the stem cells had more widespread biological action than the drug therapy,” said Paul R. Sanberg, distinguished professor at USF and principal investigator of the Department of Defense funded project. “Regardless, their combination had an apparent synergistic effect and resulted in the most effective amelioration of TBI-induced behavioral deficits.”

This particular study examined motor improvements or improvements in movement, but the USF group suggested that future combination therapy research should also include analysis of cognitive improvement in the laboratory animals with TBI.

In short, umbilical cord cell and growth factor treatments tested in animal models could offer hope for millions, including U.S. war veterans with traumatic brain injuries.

Post-script:  On Twitter, Alexey Bersenev made some very helpful observations about this paper.  In this paper, the authors used whole human umbilical cord blood.  They did not attempt to separate any of the different cell types from the cord blood.  Now when such whole blood is used, it is easy to assume that the stem cells in the blood that are doing the regenerative work.  However, as Alexey graciously pointed out, you cannot assume that the stem cells are responsible for the therapeutic effects for at least two main reasons:  1)  the number of stem cells in the cord blood is quite small relative to the other cells; 2) some of the non-stem cells in the blood turn out to have therapeutic effects.  See here and here.  I have seen some of these papers before, but I did not think much of them.  Therefore, until the cell populations in the umbilical cord blood are dissected out and studied, all we can say with any confidence is SOMETHING in the cord blood is conveying a therapeutic effect, but the identity of the therapeutic culprit remains unclear at this time.