Duke University Tissue Engineering Team Grows Self-Healing Muscle in Laboratory


Scientists have grown living muscle in the lab. While this is nothing new, this new advance has succeeded in making muscle that not only looks and works like genuine skeletal muscle, but also heals by itself, which is a significant advance in the field of tissue engineering.

This ultimate goal of this research is to use lab-grown muscle repair muscle damage in human patients. To date, preclinical trials have shown that lab-grown muscle properly regenerated damaged muscle in laboratory mice.

This research comes from Duke University, and the research team responsible for this work thinks that their success was due to the culture environment that they have created to grow muscle in the laboratory. Their well-developed contractile muscle fibers also contained a pool of satellite cells, which are an immature stem cell population in skeletal muscle that are activated when the muscle is damaged. Satellite cells can divide and differentiate into normal muscle tissue in order to heal muscle damage.

Cultured Muscle

Laboratory tests showed that the lab-grown muscle was as strong and good at contracting as muscle isolated from living organism. Also, the laboratory-grown muscle was able to use its satellite cell population to repair itself when the muscle was damaged with toxic chemicals.

Muscle satellite cells

When it was grafted into laboratory mice, the muscle properly integrate into the rest of the surrounding tissue and functioned beautifully when called upon to do so.

The Duke team, however, stresses that more tests must be conducted before this work can be translated into human patients.

The lead researcher for this work, Nenad Bursac, Associate Professor of Biomedical Engineering at Duke University, said: “The muscle we have made represents an important advance for the field. It’s the first time engineered muscle has been created that contracts as strongly as native neonatal [newborn] skeletal muscle.”

UK expert in skeletal muscle tissue engineering Prof Mark Lewis, from Loughborough University, said: “A number of researchers have ‘grown’ muscles in the laboratory and shown that they can behave in similar ways to that seen in the human body. However, transplantation of these grown muscles into a living creature, which continue to function as if they were native muscle has been taken to the next level by the current work.”

Tissue engineering seeks to use stem cells to fashion new organs and tissues from cultured stem cells. Tissue engineering and stem cell biology will certainly transform regenerative medicine, and in many ways it is already doing so. Scientists have already made mini-livers and kidneys in the lab using stem cells, and others are using stem cells to heal damaged heart muscles. Even though some cures and treatments are still some years away, advances continue to pile up. The future of medicine is upon us.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).