An Improved Way to Make Motor Neurons in the Laboratory from Stem Cells


A research team from the University of Illinois at Urbana-Champaign has reported that they can produce human motor neurons from stem cells much more quickly and efficiently than previous methods allowed. This finding was published in the journal Nature Communications and it will almost certainly provide new ways to model human motor neuron development, diseases of the nervous system, and ways to treat spinal cord injuries.

The new protocol described in the Nature Communications paper includes adding critical signaling molecules to precursor cells a few days earlier than specified by previous methods. This innovation increases the proportion of healthy motor neurons derived from stem cells from 30 to 70 percent. It also cuts in half the time required to make motor neurons.

“We would argue that whatever happens in the human body is going to be quite efficient, quite rapid,” said University of Illinois cell and developmental biology professor Fei Wang, who led the study with visiting scholar Qiuhao Qu and materials science and engineering professor Jianjun Cheng. “Previous approaches took 40 to 50 days, and then the efficiency was very low – 20 to 30 percent. So it’s unlikely that those methods recreate human motor neuron development.”

The new method designed by Qu generated a larger population of mature, functional motor neurons in 20 days. According to Wang, this new approach will allow scientists to induce mature human motor neuron development in cell culture, and to identify the factors that drive this process

Because stem cells can differentiate into a wide variety of cell types, they are unique compared to mature, adult cells. Making neurons from either embryonic stem cells or induced pluripotent stem cells requires the addition of signaling molecules to the cells at critical moments in culture.

Previously, Wang and his colleagues discovered a molecule called compound C that converts stem cells into “neural progenitor cells,” or NPCs. NPCs represent an early stage in neuronal development, and further manipulation of NPCs can drive them to become neurons, but differentiating NPCs into motor neurons presents another set of problems.

Other published studies have established that the addition of two important signaling molecules, six days after exposure to compound C, to NPCs in culture can generate motor neurons, but at rather poor efficiencies. In this newly published study, Qu showed that adding the signaling molecules at Day 3 worked better: The NPCs differentiated into motor neurons quickly and efficiently. Thus, Day 3 represents a previously unrecognized NPC cell stage.

This new approach has immediate applications in the laboratory. Amyotrophic lateral sclerosis or ALS is a neurological disease that causes motor neurons to die off. By using Wang and Qu’s cell culture system to make neurons from the skin cells of ALS, and watching them develop into motor neurons, scientists and physicians will divine other new insights into disease processes. Therefore, any method that improves the speed and efficiency of generating the motor neurons will be a boon to neuroscientists. These cells can also be used to screen for drugs to treat motor neuron diseases, and might even be used to therapeutically restore lost function in patients someday.

“To have a rapid, efficient way to generate motor neurons will undoubtedly be crucial to studying – and potentially also treating – spinal cord injuries and diseases like ALS,” Wang said.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).