Neuralstem Treats Final Patient in Phase 2 ALS Stem Cell Trial


NeuralStem, Inc. has announced that the final patient in its Phase 2 clinical trial that assessed the efficacy of its NSI-566 spinal cord-derived neural stem cell line in the treatment of amyotrophic lateral sclerosis (ALS), which is otherwise known as Lou Gehring’s disease.

ALS is a rapidly progressive, invariably fatal neurological disease that attacks the nerve cells responsible for controlling voluntary muscles; that is, muscle action we are able to control, such as those in the arms, legs, and face, etc.  ALS is a member of those disorders known as motor neuron diseases, all of which are characterized by the gradual degeneration and death of motor neurons.

Motor neurons are nerve cells located in the brain, brain stem, and spinal cord that serve as controlling units and vital communication links between the nervous system and the voluntary muscles of the body. Messages from motor neurons in the brain (so-called upper motor neurons) are transmitted to motor neurons in the spinal cord (so-called lower motor neurons) to particular muscles. In ALS, both the upper motor neurons and the lower motor neurons degenerate or die, and stop sending messages to muscles. Unable to function, the muscles gradually weaken, waste away (atrophy), and have very fine twitches (called fasciculations). Eventually, the ability of the brain to start and control voluntary movement is lost.

ALS causes weakness with a wide range of disabilities. Eventually, all muscles under voluntary control are affected, and individuals lose their strength and the ability to move their arms, legs, and body. When muscles in the diaphragm and chest wall fail, people lose the ability to breathe without ventilatory support. Most people with ALS die from respiratory failure, usually within 3 to 5 years from the onset of symptoms. However, about 10 percent of those with ALS survive for 10 or more years.

Although the disease usually does not impair a person’s mind or intelligence, several recent studies suggest that some persons with ALS may have depression or alterations in cognitive functions involving decision-making and memory.

ALS does not affect a person’s ability to see, smell, taste, hear, or recognize touch. Patients usually maintain control of eye muscles and bladder and bowel functions, although in the late stages of the disease most individuals will need help getting to and from the bathroom.

In this multicenter Phase 2 trial, 15 patients who still had the ability to walk were treated in five different dosing cohorts. The first 12 of these patients received injections only in the cervical regions of the spinal cord in increasing doses (5 injections of 200,000 cells per injection to injections of 4000,000 cells each . In the cervical region, these injected stem cells could potentially preserve the nerves that mediate breathing and this is precisely that this part of the trail aims to test.

spinal cord regions

In the final three patients injected in this trial, patients received a total of 40 injections of 400,000 cells each into both cervical and lumbar regions (a total of 16 million cells were injected. This is in contrast to the patients who participated in the Phase 1 study who received 15 injections of 100,000 cells each (total of 1.5 million cells). This trial will continue until six months past the final surgery, after which the data will be analyzed.

“By early next year, we will have six-month follow-up data on the last patients who received what we believe will be the maximum safe tolerated-dose for this therapy,” said Dr. Eva Feldman, principal investigator in this clinical trial, and a member of the ALS Clinic at the University of Michigan. Dr. Feldman also serves as an unpaid consultant to Neuralstem.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).