Society for Neuroscience Conference 2014 Continued


Let me emphasize that the huge number of posters and talks at the SfN conference made it impossible to attend all of them, so my recollections here are some of the high points that I was able to take in. There is a lot of terrific science going on out there and these conferences are windows into it.

One poster described a feeding study in rats. One group of rats received a diet rich in omega-3 fatty acids, which are found in fish oils and soy. Another group was fed a standard laboratory diet that tends to skim on the omega-3 fatty acids. In the brains of the omega-3-fed rats, the expression off the gene that encodes Brain Derived Neurotropic Factor or BDNF increased significantly.

This is significant because BDNF promotes the survival of nerve cells (neurons) by playing a role in the growth, maturation (differentiation), and maintenance of these cells. In the brain, BDNF protein is active at the connections between nerve cells (synapses), where cell-to-cell communication occurs. The synapses can change and adapt over time in response to experience, a characteristic called synaptic plasticity, and BDNF regulates synaptic plasticity, which is important for learning and memory.

When these researchers examined why the BDNF gene was unregulated in rats fed the omega-3-rich diet, they discovered that the starting point of the gene, which is called the promoter was nice and clear. In the standard diet rats, the promoter of the BDNF gene was chemically modified with methyl (-CH3) groups. In the absence of the methyl groups, the transcription factor CTCF was able to bind and increase the rate of transcription. If the promoter was chemically modified with methyl groups, then a protein called MeCP2 bound to the promoter and prevented expression of BDNF.

This group looked further and discovered that the omega-3-rich diet seemed to influence the expression of BDNF by means of the balance of reduced and oxidized versions of electron carriers in cells, in particular, the ratio of NAD+ to NADH. NAD is a major electron carrier in cells and the ratio of NAD+, the oxidized version of this molecule, to the reduced version of this molecule, NADH, is a measure of the energy charge of the cell and how well-fed the individual is. More importantly, NAD is a substrate for another regulator of gene expression called Sirtuins.

Sirtuins are protein deacetylases, but they are unusual deacetylases since many of them they do not simply hydrolyze acetyl-lysine residues. Instead they couple lysine deacetylation to NAD hydrolysis. This hydrolysis produces O-acetyl-ADP-ribose, which is the deacetylated substrate and nicotinamide, which is an inhibitor of sirtuin activity. The dependence of sirtuins on NAD links their enzymatic activity directly to the energy status of the cell via the cellular NAD:NADH ratio.

The fact that a diet high in omega-3 fatty acids affects the NAD/NADH ratio is significant for Alzheimer’s disease because the sirtuin, SIRT1, deacetylates and coactivates the promoter for the gene that encodes the retinoic acid receptor beta gene, which subsequently upregulates the expression of alpha-secretase (ADAM10). Alpha-secretase is able to suppress beta-amyloid production. ADAM10 activation by SIRT1 also induces the Notch signaling pathway, which is known to repair neuronal damage in the brain. All of this begins with a dietary factor that actually protects the brain from Alzheimer’s disease by profound changes in gene expression.

Another poster from an Italian group used the 5XFAD mouse model of Alzheimer’s disease to test a growth factor called “painless Nerve Growth Factor” on mice with protein plaque formation in their brains. The growth factor was given by placing droplets of the growth factor in the noses of the mice while they were anesthetized. The results were stunning. Normally, 5XFAD mice get plaques quickly in their brains and lots of them. However, the growth factor was able to rescue the onset of behavioral deficits and reduces, although not eliminate, plaque formation. Other brain-specific pathologies found in these mice were reduced, such as astrocytosis. The wandering white cells in the brain known as microglia did a better job of gobbling up protein aggregates and clearing them from the brain, and the markers of inflammation were significantly reduced. I asked the investigator if there were plans to try to move this to clinical trials, and she said that she was unable to do so because of a lack of funding. Maybe someone will collaborate with this dear lady to make it so?

In another poster, the overexpression of an enzyme called heparanase in the brain decreased the burden of protein aggregates in the brains of mice with Alzheimer’s disease. I was not able to get into the details of this poster because of time.

In another poster, a very energetic young man told me about his very interesting work with a Parkinson’s disease model in rodents. If mice are administered a drug called MPTP (short for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), the dopamine-using neurons in the brain will specifically take up this drug in high concentrations and it will kill them. Therefore, this drug is an excellent model system to study Parkinson’s disease in mice.

Prokineticin-2 is a gene that is expressed in high quantities in the surviving dopamine-using neurons that came from the brains of Parkinson’s disease patients after their deaths. When Prokineticin-2 was overexpressed in cultured dopaminergic neurons, they unregulated a protein called Bcl-2. Bcl-2 is one of the group of proteins can protect cells from dying. Therefore, Prokineticin-2 is a prosurvival protein.

Next, this chap switched from a culture system to a “in a living animal” system or an in vivo system. By using genetically engineered viruses that overexpressed Prokineticin-2 in the brains of mice, he discovered that this viruses did not adversely affect the mice and he did in fact achieve high levels of Prokineticin-2 in the brains of mice with this recombinant viruses. The overexpression did not affect the mice in the least. When he did the same experiment with MPTP-treated mice – oh, just to be clear, he overexpressed Prokineticin-2 first and then administered the MPTP because it takes about 30 days for the viruses to properly upregulate Prokineticin-2 – he saw decreased inflammation in the brain, and increase in Bcl-2 and Pink1 expression in the brain (both of these genes are pro-survival genes), and the behavioral problems of the mice never emerged with the severity of the MPTP mice. When he examined TH – an enzyme that makes the neurotransmitter dopamine, he saw that levels of this enzyme were up too. This means that the dopamine-using neurons were surviving. Is this cool stuff or what?

That’s enough for now. More later.

Cardiac Stem Cells or their Exosomes Heal Heart Damage Caused by Duchenne Muscular Dystrophy


One of the research institutions that has been at the forefront of developing investigational stem cell treatments for heart attack patients is The Cedars-Sinai Heart Institute. Recently, a research team at Cedars-Sinai Heart Institute (CSHI) has injected cardiac stem cells into the hearts of laboratory mice afflicted with a rodent form of Duchenne muscular dystrophy. This disease can also adversely affect the heart, and these stem cell injections actually improved the heart function of these laboratory animals and resulted in greater survival rates for those mice. This work might provide the means to extend the lives and improve the quality of life of patients with this chronic muscle-wasting disease.

The CSHI team presented their results at the American Heart Association Scientific Sessions in Chicago. Their results clearly demonstrated that once laboratory mice with Duchenne muscular dystrophy were infused with cardiac stem cells, the animals showed progressive and significant improvements in heart function and increased exercise capacity.

Specifically, 78 lab mice that had been given laboratory-induced heart attacks were injected with their own cardiac stem cells, and over the next three months, these mice demonstrated improved pumping ability and exercise capacity in addition to a reduction in heart-specific inflammation. The CSHI team also discovered that the stem cells work indirectly, by secreting tiny vesicles called exosomes that are filled with molecules that induce tissue healing. When these exosomes were purified and administered alone, they reproduced the key benefits of the cardiac stem cells.

Apparently, this particular procedure could be ready for testing in human clinical studies as soon as next year.

Duchenne muscular dystrophy or DMD is a genetic disease that results from mutations in a gene found on the X chromosome in humans. DMD affects 1 in 3,600 boys and is a neuromuscular disease caused by abnormalities in a muscle protein called dystrophin.  Because dystrophin is an important structural protein for muscle that anchors muscle to other muscles and to the substratum, deficiencies for functional copies of the dystrophin protein cause progressive muscle wasting, destruction, and muscle weakness.

Dystrophin acts as an important link between the internal cytoskeleton and the extracellular matrix. Neuronal nitric oxide synthase (nNOS) binds to α-syntrophin but also has a binding site in repeat 17 of the rod domain of dystrophin (see Fig. 2A for details of dystrophin domains). αDG, α-dystroglycan; βDG, β-dystroglycan
Dystrophin acts as an important link between the internal cytoskeleton and the extracellular matrix. Neuronal nitric oxide synthase (nNOS) binds to α-syntrophin but also has a binding site in repeat 17 of the rod domain of dystrophin (see Fig. 2A for details of dystrophin domains). αDG, α-dystroglycan; βDG, β-dystroglycan.  See here

The majority of DMD patients lose their ability to walk by twelve years of age, although the severity of the disease varies from patient to patient. The average life expectancy is about 25, and the cause of death is usually heart failure. Dystrophin deficiency causes heart muscle weakness, and, ultimately, heart insufficiency, since the chronic weakness of the heart muscle prevents the heart from pumping enough blood to maintain a regular heart rhythm and provide for the needs of the rest of the body. Such a heart condition is called “cardiomyopathy.”

“Most research into treatments for Duchenne muscular dystrophy patients has focused on the skeletal muscle aspects of the disease, but more often than not, the cause of death has been the heart failure that affects Duchenne patients,” said Eduardo Marbán, MD, PhD, who is the director of the CSHI and the principal investigator of this particular study. “Currently, there is no treatment to address the loss of functional heart muscle in these patients.”

In 2009, Marbán and his team completed the world’s first procedure in which a patient’s own heart tissue was used to grow specialized heart stem cells. Stem cells from the heart were isolated, cultured, and then injected back into the patient’s heart in order to repair and regrow healthy heart muscle that had been injured by a heart attack. Results, Marbán and his colleagues published these results in The Lancet in 2012, and also demonstrated that one year after their patients had received the experimental stem cell treatment, they showed significant reductions in the size of the heart scar that had been produced by their heart attacks.

Earlier this year, CSHI researchers commenced a new clinical trial entitled “ALLSTAR,” which stands for Allogeneic Heart Stem Cells to Achieve Myocardial Regeneration (Clinical trial number NCT01458405). In this study, heart attack patients are given injections of stem cells from healthy donors, which should work better than the patient’s own stem cells, which were damaged by the heart attack.

CSHI has recently opened the nation’s first Regenerative Medicine Clinic, which is designed to match heart and vascular disease patients with the appropriate stem cell clinical trial being conducted at CSHI and other institutions.

“We are committed to thoroughly investigating whether stem cells could repair heart damage caused by Duchenne muscular dystrophy,” Marbán said.

The protocols for growing cardiac-derived stem cells were developed by Marbán when he was on the faculty of Johns Hopkins University. Johns Hopkins has filed for a patent on that intellectual property and has licensed it to Capricor, a company in which Cedars-Sinai and Marbán have a financial interest. Capricor is providing funds for the ALLSTAR clinical trial at Cedars-Sinai.