Novastem Treats Its First Stroke Patient With Stemedica’s Mesenchymal and Neural Stem Cell Combination


The biotech company Novastem is a leader in regenerative medicine and has announced the treatment of its first patient in its clinical study for ischemic stroke at Clinica Santa Clarita, Mexico. This clinical trial is testing cell products made by Stemedica. In particular, Stemedica’s ischemia-tolerant mesenchymal stem cells (itMSCs) were administered in combination with ischemia-tolerant neural stem cells (itNSCs); both of which are proprietary products of Stemedica.

Stemedica‘s itMSCs and itNSCs are unique because of the manner in which they are manufactured – they are grown under conditions that make them resistant to low-oxygen conditions. Experiments conducted with these cells in culture and in living animals have definitely shown that when these cells are exposed to low-oxygen conditions, they show greater homing and engraftment than cells grown under normal conditions. Compared to other MSCs and NSCs, Stemedica’s stem cells secrete higher levels of growth factors and other important proteins associated with angiogenesis and healing.

According to the American Stroke Association, ischemic strokes account for 87 percent of all stroke cases. Novastem is continuing to enroll qualified patients in their study. This clinical trial is entitled “Internal Research Protocol in Combination Therapy of Intravenous Administration of Allogeneic Mesenchymal Stem Cells and Intrathecal Administration of Neural Stem Cells in Patients with Motor Aphasia due to Ischemic Stroke.” All participants in this clinical trial will receive a unique, combination stem cell therapy consisting of cells made by Stemedica Cell Technologies.

Novastem is sponsoring this clinical trial and Novastem is the only company licensed to use Stemedica’s stem cell products for studies in Mexico. Novastem’s Clinica Santa Clarita facility is federally licensed to use stem cell therapies, and this trial marks the first time ischemic stroke is being treated with a patented medical method that comprises administration of hypoxically-grown neural stem cells into the cerebrospinal fluid in combination with intravenous administration of hypoxically-grown mesenchymal stem cells. This combination approach is designed to treat the after effects of ischemic strokes.

“Novastem and Clinica Santa Clarita are committed to advancing the research of neurodegenerative disease, and we are pleased to be working with internationally-recognized physician Clemente Humberto Zuniga Gil, MD as the principal investigator and study designer,” says Rafael Carrillo, Novastem’s President. “Our medical team believes that Stemedica’s mesenchymal and neural stem cells, used in this unique combination therapy, will restore and build new vascularization, improve the blood supply, reconnect damaged neural networks and improve functionality of areas affected by our patients’ ischemic stroke.”

The aim of this Novastem study is to evaluate functional changes on subjects after the administration of ischemia-tolerant mesenchymal and neural stem cells. The protocol in use in this clinical trial has been approved by the Research Ethics Committee of Clinica Santa Clarita, which is federally registered and licensed by the Federal Commission for the Protection against Sanitary Risk (COFEPRIS), a division of Mexico’s Ministry of Health.

Patient progress will be tracked at the beginning of the study before any cells have been administered, at 90 days after stem cell administration, and then again at 180 days after administration. Patient improvement will be ascertained with the United States National Institute of Health Stroke Score (NIHSS), Stroke and Aphasia Quality of Life Scale-39 (SAQCOL-39) and the Boston Diagnostic Aphasia Examination (BDAE) neuropsychological evaluation for diagnosis. Additionally, MRIs taken with a gadolinium-based contrast agent (GBCA) will examine the structural integrity of the brain before and after stem cell administration. At the endpoint, the treatment will be evaluated for safety and tolerance of the two-cell treatment. Additionally, patients will be evaluated for changes in neurological functionality.

Advertisements

New Bone Marrow-Based Stem Cell Identified in Mice that Regenerates Bones and Cartilage in Adults


Researchers at Columbia University Medical Center (CUMC) have discovered a bone marrow-based stem cell capable of regenerating both bone and cartilage in mice. The discovery appeared in the online issue of the journal Cell.

These cells have been called osteochondroreticular (OCR) stem cells, and they were identified in experiments that tracked a protein expressed by these cells. By using this specific protein as a marker for OCR stem cells, the Columbia team found that OCR cells self-renew and produce key bone and cartilage cells, including osteoblasts and chondrocytes. Furthermore, when OCR stem cells are transplanted to a fracture site, they dutifully contribute to bone repair.

“We are now trying to figure out whether we can persuade these cells to specifically regenerate after injury. If you make a fracture in the mouse, these cells will come alive again, generate both bone and cartilage in the mouse—and repair the fracture. The question is, could this happen in humans,” says Siddhartha Mukherjee, MD, PhD, assistant professor of medicine at CUMC and a senior author of the study.

Since mice and humans have similar bone biology, Mukherjee and his colleagues are quite confident that OCR stem cells exist in human bone marrow. Further studies could uncover new and effective ways to exploit OCR cells to provide greater ways to prevent and treat osteoporosis, osteoarthritis, or bone fractures.

“Our findings raise the possibility that drugs or other therapies can be developed to stimulate the production of OCR stem cells and improve the body’s ability to repair bone injury—a process that declines significantly in old age,” says Timothy C. Wang, MD, the Dorothy L. and Daniel H. Silberberg Professor of Medicine at CUMC, who initiated this research. Wang and his team previously found an analogous stem cell in the intestinal tract and observed that it was also abundant in the bone.

“These cells are particularly active during development, but they also increase in number in adulthood after bone injury,” says Gerard Karsenty, MD, PhD, the Paul A. Marks Professor of Genetics and Development, chair of the Department of Genetics & Development, and a member of the research team.

Mukherjee and his coworkers also showed that adult OCR stem cells are distinct from mesenchymal stem cells (MSCs). MSCs play essential roles in bone generation during development and adulthood. Therefore, researchers thought that MSCs gave rise to all bone, cartilage, and fat, but recent studies have shown that MSCs do not generate young bone and cartilage. This study by Mukherjee and his colleagues suggests that OCR stem cells actually make young bone and cartilage, but both OCR stems cells and MSCs contribute to bone maintenance and repair in adults.

Mukherjee also suspects that OCR cells may play a role in soft tissue cancers.

A research team from Stanford University School of Medicine just released a similar study that used a different methodology to identify the same stem cell type.