Experimental Drug Can Stimulate the Regrowth of Damaged Tissues


Research at Case Western Reserve, in collaboration with scientists from UT Southwestern Medical Center has identified yet another stem cell-activating drug. In animal models, this drug has helped mice regrow damaged liver, colon, and bone marrow tissue. The experimental drug examined in these experiments might open new possibilities for regenerative medicine. If clinical trials show that this drug therapy works in humans, it might save the lives of critically ill people with liver or colon disease or even some cancers.

This study was published in the journal Science. Even this work is exciting, this research is in the early stages and more work is necessary for the drug can be tested in people.

“We are very excited,” said co-author Sanford Markowitz, professor of cancer genetics at Case Western Reserve’s School of Medicine. “We have developed a drug that acts like a vitamin for tissue stem cells, stimulating their ability to repair tissues more quickly,” he added. “The drug heals damage in multiple tissues, which suggests to us that it may have applications in treating many diseases.”

This new drug is called SW033291. SW033291 works by inhibiting an enzyme with the formidable name of 15-hydroxyprostaglandin dehydrogenase, which is mercifully shortened to 15-PGDH. This enzyme degrades regulatory molecules called “prostaglandins.” One of these prostaglandins, known as prostaglandin E2, stimulates stem cell growth and differentiation. Inhibition of 15-PGDH increases the concentrations of prostaglandin E2 and stimulates the growth of tissue stem cells, which promotes healing.

prostaglandin_e2

Markowitz and his colleagues first showed that SW033291 inactivated 15-PGDH in a test tube. When they fed the drug to cells, it also inhibited 15-PGDH. Finally, they gave the drug to lab animals and showed that even in a living body, SW033291 inhibited 15-PGDH.

Does the drug augment healing? To determine this, Markowitz and others subjected mice to lethal doses of radiation, followed by a partial bone marrow transplant. Some of the mice were given SW033291 plus the bone marrow transplant while others received only the transplant. The mice that received SW033291 survived, while the others died.

In other studies, mice that had lost large amounts of blood were given SW033291, and mice given SW033291 recovered normal blood counts six days faster than mice that did not get the treatment.

Mice with an inflammatory disease called ulcerative colitis were given SW033291 and the drug “healed virtually all the ulcers in the animals’ colons and prevented colitis symptoms,” said the study’s authors.

“In mice where two-thirds of their livers had been removed surgically, SW033291 accelerated regrowth of new liver nearly twice as fast as normally happens without medication.” Additionally, SW033291 produced no adverse side effects.

Researchers who were not involved with the work said the study showed promise, but urged a heavy dose of caution. For example, Dusko Illic, a stem cell expert at Kings College London, said: “The drug seems to be too good to be true. We would have to be sure that nothing else was wrong with any organ in the body,” because if there were cancer cells present, the treatment would likely cause tumor cells to grow along with other tissue.

However, Ilaria Bellantuono, an expert in stem cell science and skeletal ageing at the University of Sheffield, said a key part of the drug’s promise could be in helping cancer patients, if it is proven safe. The “treatment has the potential of boosting patents’ resilience and improving their response to cancer treatment,” said Bellantuono. “This study is a proof of concept in mice and more experimental work is needed to verify the long-term safety of such an approach but it surely shows promise.”

The author of this study said that the first people to receive the experimental treatment in clinical trials would likely be patients who are receiving bone marrow transplants, have ulcerative colitis, or are undergoing liver surgery.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).