First Clinical Trial for Genetically Engineered Stem Cell Treatment for Pulmonary Arterial Hypertension


A Canadian research team has published the results of the world’s first clinical trial of a genetically enhanced stem cell therapy for pulmonary arterial hypertension (PAH).

PAH is a rare and deadly disease that mainly affects young women, and is characterized by very high blood pressure in those arteries that supply blood to the lungs. Some cases of PAH are caused by mutations in the BMPR2 gene, but in many cases the cause remains unknown. Currently, PAH patients are treated with combination of various drug and oxygen. Drug treatments include blood vessel dilators, such as epoprosternol (Flolan or the inhaled form known as iloprost or Ventavis), endothelin receptor antagonists, such as bosentan (Tracleer) or ambrisentan (Letaris), sildenafil (Viagra) or tadalafil (Cialis), high doses of calcium channel blockers, anticoagulants, and diuretics. Such treatments can improve symptoms and exercise capacity (at best), but they cannot repair the blood vessel damage to the lungs or cure the disease.

This new study, entitled “Endothelial NO-Synthase Gene-Enhanced Progenitor Cell Therapy for Pulmonary Arterial Hypertension: the PHACeT Trial“ was published in the journal Circulation Research, and was coauthored lead investigator Duncan J. Stewart of the Ottawa Hospital Research Institute, and his collaborators.

The paper describes PAH as a progressive and eventually lethal disease that is characterized by eventual loss of functional lung microvasculature. This paper also argues that cell-based therapies offer the possibility of repairing and regenerating the lung microcirculation. The paper also reports that stem-cell therapy has shown promise in a pre-clinical evaluation that utilized experimental models of PAH.

This trial was a phase 1, dose-escalating clinical study whose goal was to test the tolerability, feasibility, and side-effects of a genetically-enhanced stem cell therapy to repair and regenerate lung blood vessels in PAH patients. Seven PAH patients who volunteered for this study underwent a blood cell selection process known as apheresis in order to harvest a certain population of white blood cells from their blood. These white blood cells were grown in the laboratory under special conditions that specifically selected for stem-like cells called endothelial progenitor cells (EPCs). These EPCs were genetically engineered to produce greater amounts of nitric oxide synthase, which makes the signaling molecule, nitric oxide (NO), a natural substance that widens blood vessels and is essential for efficient vascular repair and regeneration. These genetically enhanced cells were then injected directly into the lung circulation of the patient from whom there were originally harvested.

Of these seven patients, five were female and two were male, and all seven patients received treatment from December 2006 to March 2010. Continued observation and follow-up exams of these patients showed that the cell infusion procedure was well tolerated, and, on the whole, these patients showed a trend towards improvement in total pulmonary resistance (TPR) over the three-day delivery period. However, there was one serious adverse event (death) that occurred immediately after discharge in a patient who had severe, end-stage disease.

These investigators concluded that delivery of EPCs overexpressing eNOS was tolerated in PAH patients, and also produced evidence of short-term improvements, associated with long-term benefits in functional and quality-of-life assessments. However, they caution that future studies will be needed in order to further establish the efficacy of this therapy.

It must be noted that this study was not designed to rigorously assess the benefits the stem cell therapy versus a placebo. However, this research group observed improved blood flow in the lungs of patients during days following the therapy, and enhanced ability to exercise and better quality of life for up to six months after the therapy. Once again, I must provide the caveat that since this was not a double-blinded, placebo-controlled study, it is no possible to determine for sure if these observed effects were due to the cells or to psychological effects.

The therapy was generally well-tolerated, but one patient who had very severe and disease and signs of poor prognosis died one day after treatment. As unfortunate as this is, it is an expected outcome, given how sick the patient was and given their declining condition prior to treatment.

“Pulmonary arterial hypertension is a deadly and incurable disease that often strikes people in the prime of their life,” says the Circulation Research paper’s senior author Dr. Duncan Stewart, a practicing cardiologist and Executive Vice-President of Research at The Ottawa Hospital, and a professor of medicine at the University of Ottawa. “We desperately need new therapies for this disease, and regenerative medicine approaches have shown great promise in laboratory models and in clinical trials for other conditions.”

“This trial shows that genetically-enhanced stem cell therapy is a promising treatment approach for pulmonary arterial hypertension,” observes Dr. Stewart. “Although this is an important start, we will need to do larger studies to establish whether this therapy can produce important and durable benefits for people suffering from this challenging disease.”

Dr. Stewart is also the lead researcher of the first clinical trial in the world of a genetically-enhanced stem cell therapy for heart attack.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).