Lab-Grown Muscle FIbers Aid in Studying Muscular Dystrophy

Skeletal muscle is the most abundant tissue in the human body, but, strangely, growing large quantities of it in the laboratory have proven rather challenging. While it is possible to reprogram other mature cells into heart muscle cells, or neurons, differentiating cells into skeletal muscle cells has simply not worked. So where do we go from here?

A new study from Brigham and Women’s Hospital (BWH) published in Nature Biotechnology has identified and even mimicked integral cues in the development of skeletal muscle. They used these cues to grow millimeter-long muscle fibers that are capable of contracting in the laboratory. This new method for growing functional muscle fibers in the laboratory potentially offer a better model for studying muscle diseases such as muscular dystrophy and for testing new treatments for these diseases.

Previous studies have used genetic modification techniques to grow small numbers of skeletal muscle cells in the laboratory. However, this new technique, which is the result of a collaboration between BWH and Harvard Stem Cell Institute, has produced a way to grow large numbers of skeletal muscle cells for use in clinical applications.

Olivier Pourquié of Harvard Medical School said, “We took the hard route: we wanted to recapitulate all of the early stages of muscle cell development that happen in the body and recreate that in a dish in the lab. We analyzed each stage of early development, and generated cell lines that glowed green when they reached a each stage. Going step by step, we managed to mimic each stage of development and coax cells toward muscle cell fate.”

The team found that a combination of secreted factors are important at the very early stages of embryonic development to stimulate muscle differentiation. By recapitulation this cocktail in the laboratory, Pourquié and his colleagues were able to mature muscle fibers in the laboratory from mouse or human pluripotent stem cells. Additionally, they produced muscle fibers in mice afflicted with muscular dystrophy by using muscle satellite cells. It is unknown if this method could help humans who suffer from muscular dystrophy, as more research is needed.

“This has been the missing piece: the ability to produce muscle cells in the lab could give us the ability to test out new treatments and tackle a spectrum of muscle diseases,” Pourquié said.

This new method also has the potential to help researchers study other muscle diseases, such as sarcopenia, or degenerative muscle loss and cachexia, the wasting away of muscle that typically occurs during severe illness.

Published by


Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).