Closing the Door on the STAP Episode

Last year, a group of Japanese researchers, led by scientists from the high-regarded RIKEN Center for Developmental Biology, reported a break-through in stem cell technology. Their so-called STAP or stimulus-triggered acquisition of pluripotency cells could be derived from mature, adult cells by exposing those cells to stressful conditions. Even though the papers that reported these advances were published in the prestigious journal Nature, immediately, people found problems in the papers that could not be easily resolved. Several laboratories tried to replicate the STAP results, with no success. The papers were eventually retracted and an internal investigation by the RIKEN Center also suggested that foul play might have been at work. Amidst all this, a question that hung in the air was this, “Was there something to the original discoveries but it was overstated?”

That question has now been definitely answered in the negative, thus closing the door for good on this whole sordid affair. Two papers were published on 23 September in the journal Nature, which was the same journal that published the original, ill-fated papers early last year that showed that STAP cells should be called NE (never existed) cells.

The original STAP papers were published in January 2014 by a team led by researchers at the RIKEN Center for Developmental Biology (CDB) in Kobe, Japan, in collaboration with scientists from Harvard Medical School in Boston, Massachusetts. These two papers claimed that embryonic-like stem cells could be produced by exposing adult body cells to stress, such as acidic conditions or physical pressure. These papers dubbed their technology “stimulus-triggered acquisition of pluripotency,” or STAP. Unfortunately, other scientists quickly discovered problems with data in the research. These problems then generated an investigation, and these papers were eventually retracted.

The paper retraction, however, did not answer the nagging questions as to whether or not the STAP procedure might have worked, and where the pluripotent stem cells labelled STAP in the RIKEN laboratory came from.

Such questions were addressed by seven teams in four countries who tried to replicate the procedure under various conditions (De Los Angeles, A. et al. Nature (2015). These teams collaborated to generate 133 attempts to produce STAP cells, and all of these attempts failed. One of these teams was led by researchers at Harvard Medical School who had worked with one of the original STAP co-authors. In this laboratory, cells were engineered to express a fluorescent protein when a gene related to pluripotency was expressed. When cells were exposed to stressful conditions, they did find some fluorescence, which suggested that pluripotency genes were expressed when cells were subjected to such conditions. However further testing showed this result to be an artifact since cells can naturally emit light; a phenomenon known as autofluorescence. Six other groups also observed autofluorescence in stressed cells, but no convincing evidence of STAP conversion.

A group of RIKEN researchers that did not include any authors of the original STAP papers analyzed the genomes of purported STAP cell lines that had be derived at the CDB. These scientists discovered multiple instances of contradictory data that probably resulted from contamination of purported STAP cells by other known cell types. The RIKEN group’s analyses showed that all remaining purported STAP stem cell lines, for example, were genetically identical to embryonic stem cell lines that already existed in the laboratory.

Additionally the “chimeric” mice that were reportedly produced by injecting STAP cells into the embryo of a developing mouse were found to have been produced by injecting pre-existing embryonic cell lines, rather than STAP cells, into the embryo. The production of chimeric mouse embryos is an experiment that definitively shows that particular cells are truly pluripotent.

Cell contamination also explains one of the most puzzling features of the original work, and that has to do with why the alleged STAP cells were reported to be capable of forming placental tissue, which is something that embryonic stem cells are not able to do (De Los Angeles, A. et al. Nature 525, 469–478 (2015)). These most recent analyses show that mixtures of trophoblast stem cells (which form the placenta in a developing embryo) were mixed with embryonic stem cells and that this mixture was used in the mouse chimeric experiments, leading to the production of mouse placental and embryonic tissue.

Stem-cell scientist Rudolf Jaenisch of the Massachusetts of Technology in Cambridge, who was part of the replication efforts, originally suggested in April 2014 to Nature’s news team that contamination was the reason for the results in the STAP papers. Unfortunately, he did not have evidence at the time for his hypothesis, but this most recent work has vindicated Jaenisch’s hypothesis.

A lingering question is how these embryonic stem cells and trophoblast stem cells came to replace purported STAP cells when the chimeric mouse experiments were performed. So-called cross-examination, which is the accidental contamination of one cell culture by another type of cell, is a well-known problem in cell culture experiments and biological research that depends on cultured cells. However, to properly explain the results in the original STAP papers, multiple independent contamination events must be invoked. “It is very difficult to reconcile the data with simple contamination or careless mislabeling,” says stem-cell scientist George Daley at Harvard Medical School. Unfortunately, requests for clarifying comments from corresponding authors of the original papers went unanswered.

In a review article published in Nature, Daley, Jaenisch argue that all new reports of new types of pluripotency should be subjected to rigorous “forensic” analysis that examines the genomes of the cells under consideration before publication. According to the authors, besides the failed STAP papers, “numerous groups are reporting ever more nuanced states of pluripotency.” In particular, the article focuses on genomic analyses, which are enabled by advances in sequencing technology, that will help evaluate such cell types.

Daley says that these experiments bring some well-desired closure to the STAP. He ended, however, with a warning to scientists who are looking for ways to reprogram cells to an embryonic-like state: “We will all be a tad more cautious in evaluating such claims.”


Published by


Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).