Blocking Differentiation is Enough to Turn Mature Cells into Stem Cells

Hiroshi Kawamoto led a collaboration between the RIKEN Center for Integrative Medical Science and other institutions in Japan and Europe that examined the possibility that adult cells can be maintained in a stem cell-like state where they can proliferate without undergoing differentiation. They discovered that in immune cells, blocking the activity of one transcription factor can maintain the cells in a stem cell-like state where they continue to proliferate and still have the capacity to differentiate into different mature cell types.

Kawamoto and his team genetically engineered hematopoietic progenitor cells from mice to overexpress the Id3 protein. Id3, or inhibitor of DNA binding 3, is an inhibitory protein that forms nonfunctional complexes with other transcription factors. In particular, Id3 inhibits so-called “E-proteins,” (such as TCF3) which drive the progenitor cells to differentiate into immune cells.

Overexpression of Id3, in addition to soaking the cells in a cocktail of cytokines, cause the cells to continue to divide as stem cells. However, when the cytokines were withdrawn, the cells differentiated into various types of immune cells.

Next, Kawamoto and his collaborators infused these engineered hematopoietic progenitors into mice that had been depleted of white blood cells. They discovered that their Id3-overexpressing cells could expand and replenish the white blood cell population of these.

In a follow-up experiment, Kawamoto and his crew recapitulated this experiment using human umbilical cord blood hematopoietic progenitors. Just like their mouse counterparts, these umbilical cord cells could be maintained in culture, and then, upon change of culture conditions, could differentiate into blood cells.

Because these cells can be kept in an undifferentiated state and can extensively proliferate, this culture system provides a model for studying the genetic and epigenetic basis of stem cell self-renewal. And it might also allow scientists to inexpensively grow large quantities of immune cells for regenerative medicine or immune therapies.

This work was published in Stem Cell Reports, October 2015 DOI: 10.1016/j.stemcr.2015.09.012.


Published by


Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).

5 thoughts on “Blocking Differentiation is Enough to Turn Mature Cells into Stem Cells”

  1. Dr. B, is it possible to increase the speed of cell production by removing the temorase protein on gene strands?

Comments are closed.