Faster Bone Regeneration With a Little Wnt


Nick Evans and his colleagues at the University of Southampton, UK have discovered that transient stimulation of the Wnt signaling pathway in bone marrow stem cells expands them and enhances their bone-making ability. This finding has led to an intense search for drugs that can stimulate the Wnt pathway in order to stimulate bone formation in wounded patients.

The Wnt pathway is a highly conserved pathway found in sponges, starfish, sharks, and people. Wnt signaling controls pattern formation during development, and the growth of stem cells during healing.

When it comes to healing, bone fractures represent a sizeable societal problem, particularly among the aged. While most fractures heal on their own, approximately 10 percent of all fractures take over six months to heal or never heal at all. In the worse cases, fracture patients can require several surgeries or might need amputation in desperate cases.

According the Evans, he and his research group are screening a wide range of chemicals to determine if they stimulate Wnt signaling. If such chemicals prove safe to use in laboratory animals, then they might become clinical tools to help stimulate bone formation and healing in patients with recalcitrant fractures.

Research from Evans’ group has shown that transient stimulation of the Wnt signaling pathway in isolated bone marrow cells increases the number of bone-making progenitor cells. However, if the Wnt pathway is activated for too long a time period, this regenerative effect is lost or even reversed. Hence the need to develop treatments that deliver small molecules that stimulate Wnt signaling in bone marrow cells for a specified period of time and in a targeted fashion.

Evans and his group have used nanoparticles loaded with Wnt proteins to do exactly that. The feasibility of this technology and its effectiveness requires further work, but the promise is there and the idea is more than a little intriguing.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).