Using CXCR4 to Make Stem Cells Stay Put: Regenerating Intervertebral Discs

The migration of several different types of stem cells is regulated by a receptor called “CXCR4” and the molecule that binds to this receptor, SDF-1. SDF-1 is a powerful summoner of white blood cells. During early development, SDF-1 mediates the migration of hematopoietic cells from fetal liver to bone marrow and plays a role in the formation of large blood vessels. During adult hood, SDF-1 plays an important role in making new blood vessels by recruiting endothelial progenitor cells (EPCs) from the bone marrow. Consequently, SDF-1 has a role in tumor metastasis where cancer cells that express the receptor CXCR4 are attracted to metastasis target tissues that release SDF-1. SDF-1 also attracts mesenchymal stem cells and helps them suppress the breakdown of bone.

Hopefully, I have convinced you that SDF-1 and its receptor CXC4 are important molecules. Can overexpression the CXCR4 receptor improve the retention of stem cells within an injured tissue?

Xiao-Tao Wu and Feng Wang from Zhongda Hospital in Nanjing, China and their colleagues have used this CXCR4 receptor/SDF-1 system to test this question in the damaged spinal cord.  This work was published in the journal DNA and Cell Biology (doi:10.1089/dna.2015.3118).

Isolated MSCs were treated with genetically engineered viruses to so that would overexpress the CXCR4 receptor. In order to track these cells under medical imaging scans, the MSCs were also labeled with superparamagnetic iron oxide (SPIO). Next, rabbits that had suffered injuries to their intervertebral discs that lie between the vertebrae were given infusions of these labeled, genetically engineered MSCs. Images of the spine were taken at 0, 8, and 16 weeks after the surgery. The degeneration of the damaged intervertebral discs were also evaluated by disc height (damaged, degenerating intervertebral discs tend to shrink and lose height).

The SPIO-labeled CXCR4-MSC could be detected within the intervertebral discs by MRI 16 weeks post-transplantation. The MSCs that had been engineered to overexpress CXCR4 showed better retention within the discs, relative to implanted MSCs that had not been engineered to overexpress CXCR4.

Did the implanted MSCs affect the integrity of the intervertebral discs? Indeed they did. Compared to the control group, loss of disc height was slowed in the animals that received the CXCR4-overexpressing MSCs. Also, the genetically engineered MSCs seemed to make more cartilage-specific materials, like the giant molecule aggrecan and type II collagen. There is a caveat here, since there is no indication that measured protein directly; only mRNAs. Until the quantities of these molecules can be directly shown to increase in the disc, the increases in these cartilage-building molecules can be said to be presumptive, but not proven.

From these experiments, it seems reasonable to conclude that CXCR4 overexpression promoted MSC retention within the damaged intervertebral discs and the increased stem cell retention enhanced stem cell-based disc regeneration. Therefore this SDF-1/CXCR4 signaling pathway might be a way to drive stem cell migration and infiltration within degenerated intervertebral discs.


Published by


Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).