Autologous Stem Cell Transplantation With Complete Ablation of Bone Marrow Delays Progression of Multiple Sclerosis in Small Phase 2 Trial


Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Around 2 million people, worldwide, suffer from MS. MS results from the patient’s immune system attacking the myelin sheath that surrounds nerve axons. These constant and relentless attacks upon the myelin sheath causes “demyelination,” resulting in loss of the sensory and motor function.

Treatment usually required the use of drugs that suppress the immune response. Some of these drugs work better than others, while other patients have forms of MS that do not respond to common MS treatment.

A new report published in the Lancet, has shown that chemotherapy followed by autologous hematopoietic stem cell transplantation (aHSCT) can completely halt clinical relapses of MS and prevent the development of new brain lesions in 23 of 24 MS patients. Patients who participated in this study experienced a prolonged period without the need for ongoing medication. Eight of the 23 patients had a sustained improvement in their disability 7.5 years after treatment. This is the first treatment to produce this level of disease control or neurological recovery from MS, but, unfortunately, treatment related risks limit its widespread use.

There are a few specialist centers that offer MS patients aHSCT. This treatment involves harvesting bone marrow stem cells from the patient, and then employing chemotherapy to suppress the patient’s immune system and essentially partially wipe it out. The isolated bone marrow is then reintroduced into the blood stream to “reset” the immune system and stop it attacking the body. However, a respectable percentage of MS patients relapse after these treatments. Therefore, these treatments must be refined and tweaked to improve their efficacy.

Drs Harold L Atkins and Mark S Freedman from The Ottawa Hospital and the University of Ottawa, Ottawa, Canada, respectively, and their colleagues, tested if complete destruction, rather than suppression, of the immune system during aHSCT could reduce the relapse rate in patients and increase the long-term rates of disease remission. They enrolled 24 patients aged 18-50 from three Canadian hospitals. All of these subjects had previously undergone standard immunosuppressive therapy, but these treatments had failed to control their MS. These patients all had poor prognosis and their disability ranged from moderate to requiring a walking aid to walk 100 meters (according to their Expanded Disability Status Scale or EDSS score).

Adkins and Freeman and their coworkers used a chemotherapy regimen of busulfan, cyclophosphamide and rabbit anti-thymocyte globulin to wipe out the patient’s bone marrow. Atkins explained that this treatment is “similar to that used in other trials, except our protocol uses stronger chemotherapy and removes immune cells from the stem cell graft product. The chemotherapy we use is very effective at crossing the blood-brain barrier and this could help eliminate the damaging immune cells from the central nervous system.” After being treated with chemotherapy regimen, the patients’ bone marrow was reconstituted with their previously isolated bone marrow.

This study’s primary outcome was activity-free survival at 3 years, using EDSS scores as the means of measuring MS progression, in addition to scanning for brain lesions, and assessing MS symptoms.

Of the 24 patients enrolled, one (4%) died from liver failure and sepsis caused by the chemotherapy. In the 23 surviving patients, prior to treatment, patients experienced 1.2 relapses per year on average, but after aHSCT, no relapses occurred during the follow-up period (between 4 and 13 years). These clinical outcomes were nicely complemented by an absence of newly detected brain lesions (as assessed by MRI images taken after the treatment). Initially, 24 MRI scans of the brains of all 24 subjects revealed 93 brain lesions, and after the treatment only one of the 327 scans showed a new lesion.

Despite the exciting success of this clinical trial, Freedman emphasized the need to interpret these results with caution: “The sample size of 24 patients is very small, and no control group was used for comparison with the treatment group. Larger clinical trials will be important to confirm these results. Since this is an aggressive treatment, the potential benefits should be weighed against the risks of serious complications associated with aHSCT, and this treatment should only be offered in specialist centers experienced both in multiple sclerosis treatment and stem cell therapy, or as part of a clinical trial. Future research will be directed at reducing the risks of this treatment as well as understanding which patients would best benefit from the treatment.”

Dr Jan Dörr, from the NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Berlin, Germany, made this comment about this clinical trial: “These results are impressive and seem to outbalance any other available treatment for multiple sclerosis. This trial is the first to show complete suppression of any inflammatory disease activity in every patient for a long period…However, aHSCT has a poor safety profile, especially with regards to treatment-related mortality.”

He added: “So, will this study change our approach to treatment of multiple sclerosis? Probably not in the short-term, mainly because the mortality rate will still be considered unacceptably high. Over the longer term (and) in view of the increasing popularity of using early aggressive treatment, there may be support for considering aHSCT less as a rescue therapy and more as a general treatment option, provided the different protocols are harmonized and optimized, the tolerability and safety profile can be further improved, and prognostic markers become available to identify patients at risk of poor prognosis in whom a potentially more hazardous treatment might be justified.”

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).