Functional, Though Not Completely Structurally Normal Tissue-Engineered Livers Made from Adult Liver Cells


Tracy C. Grikscheit and her research team from the Saban Research Institute at the Children’s Hospital Los Angeles have produced functional, tissue-engineered human and mouse liver from adult stem and progenitor cells.

The largest organ in our bodies, the liver executes many vital functions. It is located in the upper right portion of the abdomen protected by the rib cage. The liver has two main lobes that are divided into many tiny lobules.

Liver cells are supplied by two different sources of blood. The hepatic artery provides oxygen-rich blood from the heart and the portal vein supplies nutrients from the intestine and the spleen. Normally, veins return blood from the body to the heart, but the portal vein allows chemicals from the digestive tract to enter the liver for “detoxification” and filtering prior to entering the general circulation. The portal vein also delivers the precursors liver cells need to produce the proteins, cholesterol, and glycogen required for normal body activities.

The liver also makes bile. Bile is a mixture of water, bile acids (made from stored cholesterol in the liver), and other sundry chemicals. Bile made by the liver is then stored in the gallbladder. When food enters the duodenum (the uppermost part of the small intestine), the gallbladder contracts and secretes bile is secreted into the duodenum, to aid in the digestion of fats in food.

The liver also stores extra sugar in the form of glycogen, which is converted back into glucose when the body needs it for energy. It also produces blood clotting factors, processes and stores iron for red blood cell production, converts toxic nitrogenous wastes (usually in the form of ammonium) into urea, which is excreted in urine. Finally, the liver also metabolizes foreign substances, like drugs into substances that can effectively excreted by the kidneys.

Both adults and children are affected by various types of liver disease. Liver can be caused by infectious hepatitis, which is caused by a variety of viruses, chronic alcoholism, inherited liver abnormalities (e.g., Wilson’s disease, hemochromatosis, Gilbert’s disease) or various types of liver cancer. One in ten people in the United States suffer from liver cancer and need a liver transplant. Liver transplantation is the only effective treatment for end-stage liver disease, but the scarcity of liver donors and the necessity of life-long immunosuppressive therapy limit treatment options. In some cases (such as inborn errors of metabolism or acute bouts of liver insufficiency), patients may be effectively treated by transplanting small quantities of functional liver tissue.

Alternate approaches that have been investigated, but these protocols have significant limitations. For example, “hepatocyte transplantation” involves the infusion of liver cells from a donated liver. This protocol, however, wastes many cells that do not integrate into the existing liver and such a treatment is usually little more than a stop-gap solution, since most patients require a liver transplant within a year of this treatment.

Human-induced pluripotent stem (iPS) cells are another possibility but, so far, iPS cells differentiate into immature rather than mature, functional, proliferative hepatocytes.

A need remains for a robust treatment that can eliminate the need for immunosuppressive theory. “We hypothesized that by modifying the protocol used to generate intestine, we would be able to develop liver organoid units that could generate functional tissue-engineered liver when transplanted,” said Dr. Grikscheit.

Grikscheit and her co-workers extracted hardy, multicellular clusters of liver cells known as liver organoid units (LOUs) from resected human and mouse livers. These LOUs were loaded onto scaffolds made from nonwoven polyglycolic acid fibers. These scaffolds are completely biodegradable and they provide a structure upon which the LOUs can grow, fuse, and form a structure that resembles a liver.

After transplantation of the LOU/scaffold combinations, they generated tissue-engineered livers or TELis. Tissue-engineered livers developed from the human and mouse LOUs and possessed a variety of key liver-specific cell types that are required for normal hepatic function. However, the cellular organization of these TELis did differ from native liver tissue.

The tissue-engineered livers (TELis) made by Grikscheit’s laboratory contained normal liver components such as hepatocytes that properly expressed the liver-specific protein albumin, CK19-expressing bile ducts, vascular structures surrounded by smooth muscles that expressed smooth muscle-specific actin, desmin-expressing stellate cells, and CD31-expressing endothelial cells. The production of albumin by the TELi hepatocytes indicated that these cells were executing their normal secretory function. In a mouse model of liver failure, their tissue-engineered liver provided some hepatic function. In addition, the hepatocytes proliferated in the tissue-engineered liver.

A cellular therapy for liver disease that utilizes technologies like this would completely change the treatment options for many patients. In particular, children with metabolic disorders and require a new liver to survive might see particular benefits if such a treatment can come to the clinic. By generating functional hepatocytes comparable to those in native liver, establishing that these cells are functional and proliferative, Grikscheit and her colleagues have moved one step closer to that goal.

To access this paper, please see: Nirmala Mavila et al., “Functional Human and Murine Tissue-Engineered Liver Is Generated From Adult Stem/Progenitor Cells,” Stem Cells Translational Medicine, August 2016 DOI: 10.5966/sctm.2016-0205.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).

3 thoughts on “Functional, Though Not Completely Structurally Normal Tissue-Engineered Livers Made from Adult Liver Cells”

  1. Tobe clear, these were not Patient-Specific Livers, and they were not Made from Induced Pluripotent Stem Cells. They were made by implanting multicellular clusters derived directly from dissected human or mouse livers into scaffolds composed of rolled sheets of polyglycolic acid; they didn’t evoke an immune response because the mice were immunodefficient and had been irradiated before implantation.

    1. Mikal, Thanks for your comment. I re-looked at the paper and you were right. I was reading something else at the time and got stuff from one paper mixed up with this one. Thanks again for you comments.

Comments are closed.