ISCO Reports that Their Parthenogenetic Neural Stem Cells Improve Brain Function In Rodents with Traumatic Brain Injuries


International Stem Cell Corporation (OTCQB:ISCO) announced that the company’s proprietary ISC-hpNSC readily expandable neural stem cells improved cognitive performance and motor coordination in laboratory afflicted with traumatic brain injuries. ISC-hpNSCs consists of a highly pure population of neural stem cells derived from human parthenogenetic stem cells.

This preclinical study was conducted by scientists at the University of South Florida Morsani College of Medicine. The study examined rodents that had suffered from controlled cortical impact injury (rather well-known to be an established model of traumatic brain injury model).

The University of South Florida researchers divided their laboratory animals into four different cohorts. One group was treated with vehicle (the buffer in which the stem cells were delivered). This group of animals were the control group for this experiment. The next three groups were treated with ISC-hpNSCs, but the animals were given these cells in three different ways. Interestingly, laboratory animals that had received injections of ISC-hpNSCs showed the highest levels of improvements in cognitive performance and motor coordination when compared to those animals injected with only vehicle. Improvements in cognitive tests in animals transplanted with ISC-hpNSCs appeared only a few days after implantation.

ISCO’s new traumatic brain injury program will use the same cellular product (ISC-hpNSC) as their ongoing Parkinson’s disease program, which is presently in clinical trials. The safety data from the Parkinson’s disease trial can be used for future trials in patients with traumatic brain injuries.

Cell banks of ISC-hpNSCs were made under so-called “Good Manufacturing Practices,” which means that they are clean enough to be used in human patients. All of these stem cells have been extensively tested for sterility, purity, identity and safety. These extensive preclinical studies conducted during the development of the Parkinson’s disease program nicely demonstrate the safety of ISC-hpNSCs, even at high doses.

There is no approved treatment for traumatic brain injuries, and these injuries can cause long-term neurological disability. However, transplantation of neural stem cells may improve some of the symptoms of traumatic brain injury. Over 1.7 million people in North America suffer annually from traumatic brain injury, with associated medical costs exceeding $70 billion. According to the World Health Organization, the global incidence for traumatic brain injury is approximately 10 million people annually.

Preclinical studies in rodents and non-human primates have shown improvement in Parkinson’s disease symptoms and increase in brain dopamine levels following the intracranial administration of ISC-hpNSCs.

Advertisements

Published by

mburatov

Professor of Biochemistry at Spring Arbor University (SAU) in Spring Arbor, MI. Have been at SAU since 1999. Author of The Stem Cell Epistles. Before that I was a postdoctoral research fellow at the University of Pennsylvania in Philadelphia, PA (1997-1999), and Sussex University, Falmer, UK (1994-1997). I studied Cell and Developmental Biology at UC Irvine (PhD 1994), and Microbiology at UC Davis (MA 1986, BS 1984).