Fat-derived cells Enhance the Bone-Forming Capacity of Hypertrophic Cartilage Matrices


Treating particular bone defects or injuries present a substantial challenges for clinicians. The method of choice usually involves the use of an “autologous” bone graft (“autologous” simply means that the graft comes from the patient’s own bone). However, autologous bone grafts have plenty of limitations. For example, if a patient has a large enough bone defect, there is no way the orthopedist and take bone from a donor site without causing a good deal of risk to the donor site. Even with small bone grafts, so-called “donor site morbidity” remains a risk. Having said that, plenty of patients have had autologous bone grafts that have worked well, but larger bone injuries or defects are not treatable with autologous bone grafts.

The answer: bone substitute materials. Bone substitute materials include tricalcium phosphate, hydroxyapatite, cement, ceramics, bioglass, hydrogels, polylactides, PMMA or poly(methy methacrylate) and other acrylates,, and a cadre of commercially available granules, blocks, pastes, cements, and membranes. Some of these materials are experimental, but others do work, even if do not work every time. The main problem with bone substitute materials is that, well, they are not bone, and, therefore lack the intrinsic ability to induce the growth of new bone (so-called osteoinductive potential) and their ability to integrate into new bone is also a problem at times.

We must admit that a good deal of progress has been made in this area and it’s a good thing too. Many of our fabulous men and women-at-arms have returned home with severe injuries from explosives and wounds from large-caliber weapons that have shattered their bones. These courageous men and women have been the recipient of these technologies. However, the clinician is sometimes left asking herself, “can we do better?”

A new paper from the laboratories of Ivan Martin and Claude Jaquiery from the University Hospital of Basel suggests that we can. This paper appeared in Stem Cells Translational Medicine and describes the use of a hypertrophic cartilage matrix that was seeded with cells derived from the stromal vascular faction of fat to not only make bone in the laboratory, but to also heal skull defects in laboratory animals. While this work benefitted laboratory animals, it was performed with human cells and materials, which suggests that this technique, if it can be efficiently and cheaply scaled up, might be usable in human patients.
The two lead authors of this paper, Atanas Todorov and Matthias Kreutz and their colleagues made hypertrophic cartilage matrices from human bone marrow mesenchymal stem cells (from human donors) that were induced to make cartilage. Fortunately, protocols have been very well worked out and making cartilage plugs with chondrocytes that are enlarged (hypertrophic) is something that has been successfully done in many laboratories. After growing the mesenchymal stem cells in culture, half a million cells were induced to form cartilage with dexamethasone, ascorbic acid 2-phosphate, and the growth factor TGF-beta1. After three weeks, the cartilage plugs were subjected to hypertrophic medium, which causes the cartilage cells to enlarge.

Chondrocyte enlargement is a prolegomena to the formation of bone and during development, many of our long bones (femur, humerus, fibula, radius, etc.), initially form as cartilage exemplars that are replaced by bone as the chondrocytes enlarge. Ossification begins when a hollow cylinder forms in the center of the bone (known as the periosteal collar). The underlying chondrocytes degenerate and die, thus releasing the matrix upon which calcium phosphate crystals accrete. The primary ossification center commences with the calcification of the central shaft of the bone and erosion of the matrix by the invasion of a blood vessel. The blood vessels bring osteoprogenitor cells that differentiate into osteoblasts and begin to deposit the bone matrix.

Next, Todorov and his crew isolated the stromal vascular fraction from fat that was donated by 12 volunteers who had fat taken from them by means of liposuction. The fat is then minced, digested with enzymes, centrifuged, filtered and then counted. This remaining fraction is called the stromal vascular fraction or SVF, and it consists of a pastiche of blood vessel-forming cells, mesenchymal stem cells, and bone-forming cells (and probably a few other cells types too). These SVF cells were seeded onto the hypertrophic cartilage plugs and used for the experiments in this paper.

First, the SVF-seeded plugs were used to grow bone in laboratory rodents. The cartilage plugs were implanted into the backs for nude mice. Different cartilage plugs were used that had been seeded with gradually increasing number of SVF cells. The implanted plugs definitely made ectopic bone, but the amount of bone they made was directly proportional to the number of SVF cells with which they had been seeded. Staining experimental also showed that some of the newly-grown bone came from the implanted SVF cells.

Ectopic bone formation. Grafts based on devitalized hypertrophic cartilage pellets were embedded in fibrin gel without or with stromal vascular fraction cells from adipose tissue and implanted subcutaneously in nude mice. (A): Representative hematoxylin and eosin, Masson-Tri-Chrome, and Safranin-O (Saf-O) staining and in situ hybridization for human ALU sequences (dark blue = positive) after 12 weeks in vivo. Saf-O stainings are blue-green because of lack of glycosaminoglycans and counterstaining with fast green. Osteoid matrix and bone marrow are visible. Scale bars = 200 µm. (B): Stainings for metalloproteinase (MMP)13 and MMP9, as well as for the N-terminal neoepitope at the major MMP cleavage site (DIPEN) after 12 weeks in vivo (red/pink = positive). Scale bars = 50 µm. +, osteoid matrix; ⋆, bone marrow. Abbreviations: ALU, Arthrobacter luteus; H&E, hematoxylin and eosin; Masson, Masson’s trichrome; MMP, metalloproteinase; Saf-O, Safranin-O; SVF, stromal vascular fraction.
Ectopic bone formation. Grafts based on devitalized hypertrophic cartilage pellets were embedded in fibrin gel without or with stromal vascular fraction cells from adipose tissue and implanted subcutaneously in nude mice. (A): Representative hematoxylin and eosin, Masson-Tri-Chrome, and Safranin-O (Saf-O) staining and in situ hybridization for human ALU sequences (dark blue = positive) after 12 weeks in vivo. Saf-O stainings are blue-green because of lack of glycosaminoglycans and counterstaining with fast green. Osteoid matrix and bone marrow are visible. Scale bars = 200 µm. (B): Stainings for metalloproteinase (MMP)13 and MMP9, as well as for the N-terminal neoepitope at the major MMP cleavage site (DIPEN) after 12 weeks in vivo (red/pink = positive). Scale bars = 50 µm. +, osteoid matrix; ⋆, bone marrow. Abbreviations: ALU, Arthrobacter luteus; H&E, hematoxylin and eosin; Masson, Masson’s trichrome; MMP, metalloproteinase; Saf-O, Safranin-O; SVF, stromal vascular fraction.

In the second experiment, Todorov and Kreutz used these SVF-seeded cartilage plugs to repair skull lesions in rats. Once again, the quantity of bone produced was directly proportional to the number of SVFs seeded into the cartilage matrices prior to implantation. In both experiments, the density of SVF cells positively correlates with the bone-forming cells in the grafts and the percentage of SVF-derived blood vessel-forming cells correlates with the amount of deposited mineralized matrix.

Bone repair capacity. Devitalized hypertrophic cartilage pellets were embedded in fibrin gel without or with stromal vascular fraction (SVF) cells from adipose tissue and implanted in rat calvarial defects. (A): Mineralized volume quantified by microtomography (n = 9 grafts assessed per group). (B): Bone area assessed in histological sections, expressed as percentage of total defect area (n = at least 24 sections assessed per group). ∗∗∗∗, p < .0001. (C, D): Representative three-dimensional microtomography reconstructions (left) and hematoxylin/eosin (H&E) staining (right) of the calvarial defects filled with devitalized grafts, implanted without (C) or with (D) activation by SVF cells after 4 weeks. Dotted circles indicate the defect borders (4 mm diameter). Scale bars = 500 µm. (E): Microtomography (left) and H&E staining (middle and right) displaying the bridging between hypertrophic matrix and bone of the calvarium, or the fusion of single pellets (right) in activated grafts. White bar = 850 µm; black bars = 500 µm. Dotted lines indicate the edge of the calvarium. (F): In situ hybridization for Arthrobacter luteus sequences showing the presence of human cells (dark blue, positive) in the explants. Scale bar = 200 µm. Abbreviations: C, calvarium; dev, fibrin gel without stromal vascular fraction; dev + SVF, fibrin gel with stromal vascular fraction; P, hypertrophic matrix; SVF, stromal vascular fraction.
Bone repair capacity. Devitalized hypertrophic cartilage pellets were embedded in fibrin gel without or with stromal vascular fraction (SVF) cells from adipose tissue and implanted in rat calvarial defects. (A): Mineralized volume quantified by microtomography (n = 9 grafts assessed per group). (B): Bone area assessed in histological sections, expressed as percentage of total defect area (n = at least 24 sections assessed per group). ∗∗∗∗, p < .0001. (C, D): Representative three-dimensional microtomography reconstructions (left) and hematoxylin/eosin (H&E) staining (right) of the calvarial defects filled with devitalized grafts, implanted without (C) or with (D) activation by SVF cells after 4 weeks. Dotted circles indicate the defect borders (4 mm diameter). Scale bars = 500 µm. (E): Microtomography (left) and H&E staining (middle and right) displaying the bridging between hypertrophic matrix and bone of the calvarium, or the fusion of single pellets (right) in activated grafts. White bar = 850 µm; black bars = 500 µm. Dotted lines indicate the edge of the calvarium. (F): In situ hybridization for Arthrobacter luteus sequences showing the presence of human cells (dark blue, positive) in the explants. Scale bar = 200 µm. Abbreviations: C, calvarium; dev, fibrin gel without stromal vascular fraction; dev + SVF, fibrin gel with stromal vascular fraction; P, hypertrophic matrix; SVF, stromal vascular fraction.

This is not the first time scientists have proposed the use of cartilage plugs to induce the formation of new bone. Van der Stok and others and Bahney and colleagues were able to repair segmental bone defects in laboratory rodents. Is this technique transferable to human patients? Possibly. Hypertrophic cartilage is relatively easy to make and it is completely conceivable that hypertrophic cartilage wedges can be sold as “off-the-shelf” products for bone treatments. SVF can also be derived from the patient or can be derived from donors.

Furthermore, the protocols in this paper all used human cells and grew the products in immunodeficient rats and mice. Therefore, in addition to scaling this process up, we have a potentially useful protocol that might very well be adaptable to the clinic.

The efficacy of this technique must be confirmed in larger animal model system before human trials can be considered. Hopefully human trials are in the future for this fascinating technique.

Fat-Based Stem Cell Treatment Suggests a New Way to Slow Scarring in Scleroderma Patients


Scleroderma is an autoimmune disease that causes chronic scarring of the skin and internal organs. The deposition of massive quantities of collagen decrease the pliability and elasticity of the skin, lungs, and blood vessels. As you might guess, the prognosis of scleroderma patients is quite poor and this disease causes a good deal of suffering and morbidity.

Treatments options usually include steroids, and other drugs that suppress the immune system, all of which have severe side effects.

New research from scientists at the Hospital for Special Surgery in New York City and other collaborating institutions, led by Dr. Teresa T. Lu, may have identified a new mechanism in operation during the onset and maintenance of scleroderma. This work was published in the Journal of Clinical Investigation.

In this study, scleroderma patients were shown to possess diminished numbers of “adipose-derived stromal cells” (ADSCs) in the layer of fat that underlies the upper layers of the skin. These fatty tissues are referred to as “dermal white adipose tissue.” The loss of these dermal white adipose tissue ADSCs tightly correlates with the onset of scarring in two different mouse model systems that recapitulate scleroderma in laboratory mice. These observations may show that ADSC loss contributes to scarring of the skin.

Why do these ADSCs die? Lu and her coworkers discovered that ADSC survival depends on the presence of particular molecules secreted by immune cells called “dendritic cells.” Skin-based dendritic cells secrete a molecule called lymphotoxin B. Although this molecule is called a toxin, it is required for ADSC survival. In laboratory mice that suffered from a scleroderma-like disease, artificial stimulation of the lymphotoxin B receptor in ADSCs amplified and eventually restored the numbers of ADSCs in the skin. Could stimulating ADSCs in this manner help treat scleroderma patients?

According the Dr. Lu, the administrating author of this publication, injecting “ADSCs is being tried in scleroderma; the possibility of stimulating the lymphotoxin B pathway to increase the survival of these stem cells is very exciting.” Dr. Lu continued, “By uncovering these mechanisms and targeting them with treatments, perhaps one day we can better treat the disease.”

Lu also thinks that a similar strategy that targets stem cells from other tissues might provide a treatment for other rheumatological conditions – such as systemic lupus erythematosis and rheumatoid arthritis. Additionally, bone and cartilage repair might also benefit from such a treatment strategy.

In the coming years, Dr. Lu and her colleagues hope to test the applicability of this work in human cells. If such a strategy works in human cells, then the next stop would be trial in human scleroderma patients. The success of such a treatment strategy would be a welcome addition to the treatment options for scleroderma patients, but only if this treatment is shown to be proven safe and effective.

“Improving ADSC therapy would be a major benefit to the field of rheumatology and to patients suffering from scleroderma,” said Lu.

The Amino Acid Valine Helps Maintain Hematopoietic Stem Cell Niches


Hematopoietic stem cells (HSCs) populate our bone marrow and divide throughout our lifetimes to provide the red and white blood cells we need to live. However, during normal, healthy times, only particular HSCs are hard at work dividing and making new blood cells. The remaining HSCs are maintained in a protective dormant state. However, in response to blood loss or physiological stress of some sort, dormant HSCs must wake from their “slumbers” and begin dividing to make the needed blood cells. Such conditions, it turns out, can cause HSCs to experience a good deal of damage to their genomes. A paper that was published in Nature last year by Walter Dagmar and colleagues (Vol 520: pp. 549) showed that repeatedly subjecting mice to conditions that required the activation of dormant HSCs (in this case they injected the mice with polyinosinic:polycytidylic acid or pI:pC to mimic a viral infection and induce a type I interferon response) resulted in the eventual collapse of the bone marrow’s ability to produce new blood cells. The awakened HSCs accumulated such large quantities of DNA damage, that they were no longer able to divide and produce viable progeny. How then can HSCs maintain the integrity of their genomes while still dividing and making new blood cells?

The answer to this question is not completely clear, but a new paper in the December 2 edition of Science magazine provides new insights into HSC physiology and function. This paper by Yuki Taya and others, working in the laboratories of Hiromitsu Nakauchi at the Institute for Stem Cell Biology and Regenerative Medicine at Stanford University School of Medicine, and Satoshi Yamazaki from the University of Tokyo, has shown that amino acid metabolism plays a vital role in HSC maintenance. As it turns out, the amino acid concentrations in bone marrow are approximately 100-fold higher than the concentrations of these same amino acids in circulating blood. Taya and others reasoned that such high amino acid concentrations must exist for reasons other than protein synthesis. Therefore, they designed dietary regimens that depleted mice for specific amino acids. Sure enough, when mice were fed valine-depleted diets, the HSCs of those mice lost their ability to repopulate the bone marrow.

Valine
Valine

After only two weeks of valine depletion, several nooks and crannies of the bone marrow – so-called stem cell “niches” – were devoid of HSCs. The bone marrow of such mice was easily reconstituted with HSCs from donor mice without the need for radiation or chemical ablation treatments.

Taya and others found that vascular endothelial stromal cells in the bone marrow secrete valine and that this secreted valine (which, by the way, is a branched-chain amino acid) is integral for maintaining HSC niches.

The excitement surrounding this finding is plain, since using harsh chemicals or radiation to destroy the bone marrow (a procedure known as “myeloablation”) causes premature ageing, infertility, lousy overall health, and other rather unpleasant side effects. Therefore, finding a “kinder, gentler” way to reconstitute the bone marrow would certainly be welcomed by patients and their physicians. However, valine depletion, even though it does not affect sterility, did cause 50% of the mice to die once valine was restored to the diet. This is due to a phenomenon known as the “refeeding effect” which has also been observed in human patients. Such side effects could probably be prevented by gradually returning valine to the diet. Taya and others also showed that cultured human HSCs required valine and another branched-chain amino acid, leucine. Since both leucine and valine are metabolized to alpha-ketoglutatate, which is used as a substrate for DNA-modifying enzymes, these amino acids might exert their effects through epigenetic modifications to the genome.

Alpha-ketoglutarate
Alpha-ketoglutarate

More work is needed in this area, but the Taya paper is a welcomed finding to a vitally important field.