Steminent Biotherapeutics Inc Receives FDA Approval to Test Fat-Based Stem Cell Product to Treat Spinocerebellar Ataxia


Steminent Biotherapeutics Inc. is a biotechnology company based in Taipei, Taiwan, with subsidiary offices in San Diego and Shanghai. It is developing stem cell-based treatments for neurological conditions for which there are presently no treatment options.

The main product developed by Steminent is “Stemchymal.” Stemchymal consists of fat-based stem cells isolated from healthy donors. The cells are isolated from the fat (collected by means of liposuction), isolated, & standardized according to Good Manufacturing Practices that allows them to be administered to human patients. These fat-based mesenchymal stem cells contain a cornucopia of growth factors, cytokines, and other molecules that promote healing. They are also safe. Steminent scientists have shown that Stemchymal cells can be grown in culture for extended periods of time without becoming genetically altered. Stemchymal cells also neither form tumors in laboratory animals, nor elicit inflammatory reactions. Therefore, tissue matching is not required before administering them. Finally, Phase I clinical trials in human patients established the safety of Stemchymal when administered to people.

In Taiwan, Stemchymal has been approved for three different clinical trials. At the Taipei Veterans General Hospital, physicians are testing Stemchymal to treat osteoarthritis of the knee, spinocerebellar ataxia (a neurodegenerative condition), and vascular conditions. A recently approved application also allows testing Stemchymal to treat patients with diabetes mellitus.

In the United States, the Food and Drug Administration has “raised no objections” Steminent’s Investigational New Drug (“IND”) application that proposes to test Stemchymal as a treatment for polyglutamine spinocerebellar ataxia (“PolyQ SCA”).

Spinocerebellar Ataxias refer to a cluster of devastating, inherited neurodegenerative diseases that are relatively rare (between 2-7 per 100,000). These diseases are characterized by degeneration of the cerebellum, a part of the brain that regulates movement, and, sometimes, the spinal cord. Spinocerebellar ataxias (SCAs) are classified according to the altered genes that cause the disease. The symptoms of SCAs tend to include an uncoordinated gait, poor hand-eye coordination, and abnormal speech (dysarthria). There are no treatments for SCAs, and supportive measures are usually used.

Some SCAs are caused by the expansion of a portion of genes that encode stretches of the amino acid glutamine. Glutamine stretches seem to act as a flexible region that allows different portions of the protein to interact with each other.  When these glutamine stretches expand, the protein does not fold properly and aggregates, forming insoluble, toxic globules in the cell that cause cell death. Other mechanisms may be at work as well, such as mRNA toxicity, loss of protein function, or some other, as yet, uncharacterized mechanisms. There are more than 30 subtypes of SCA, and the following types of SCAs include poly-glutamine expansions: SCA1, SCA2, SCA3, SCA6, SCA7 and SCA17. The amino acid glutamine is encoded by the codons “CAG” and “CAA” stretches of these codons can cause DNA polymerase to slip, which causes the insertion of extra codons and expansion of the polyglutamine stretches.

The age of onset associated with PolyQ SCA disease patients can range from 20-50 years old. Not only are SCAs life-threatening diseases, but the extended physical handicaps imposed on the patient place a heavy burden on the patient’s family and healthcare providers.

As stated, there are no cures for SCAs, but Steminent has conducted a Phase I/II trial with SCA patients and showed that Stemchymal is safe for SCA patients. There were “no biological-related adverse effects observed in the 12-month follow-up. Additionally, patients seemed to improve while on Stemchymal. These functional improvements were maintained for up to 6 months.

In December 2015, the FDA designated Stemchymal as an Orphan Drug for the treatment of PolyQ SCAs. The Orphan Drug Designation grants “orphan status” to treatments of rare indications that affect fewer than 200,000 people in the U.S. This Orphan Drug Designation allows Steminent a seven-year window during they will enjoy “market exclusivity upon approval of Stemchymal® and other development incentives including tax credits for clinical research costs and Prescription Drug User Fee Act (PDUFA) fee exemption.”

Managing Director of Steminent USA, Dr. Jennifer Ho, said, “Our Phase II Stemchymal® SCA program includes double blinded, randomized, and placebo-controlled trials to evaluate Stemchymal® SCA for safety and evidence of efficacy for treating PolyQ SCA in three countries. The first of these Phase II trials is currently enrolling patients in Taipei, and now with FDA consent, we are very pleased to initiate this US orphan designated drug trial. ReproCELL, our Japan partner, has also submitted its CTN to the PMDA to assess Stemchymal® SCA in treating PolyQ SCA in Japan.”

Dr. Susan Perlman, Clinical Director, UCLA Ataxia Center, Professor of Neurology, UCLA, and Medical Director; National Ataxia Foundation, said of Steminent’s clincal trial, “as there are currently no approved treatments for this progressive, irreversible disease, we are encouraged by the possibility that Stemchymal® cell therapy may demonstrate safety and therapeutic benefit in these patients.” According to Dr. Perlman, “It is estimated that about 15,000 people in the USA suffer from PolyQ SCA disease.”

With FDA approval in hand, Steminent will prepare the US trial sites and commence patient enrollment.

Advertisements

Aegle Therapeutics is Awarded IND to Test Extracellular Vesicles from Stem Cells in Burn Patients


Aegle Therapeutics is a Miami, FL-based biotechnology company that has taken a completely novel approach to regenerative medicine.  Aegle Therapeutics has developed new techniques to isolated extracellular vesicles made by cultured stem cells.  Specifically, Aegle Therapeutics isolate extracellular vesicles from bone marrow-based mesenchymal stem cells for therapeutic purposes.

Scientists at Aegle Therapeutics have shown that standard protocols used to isolated extracellular vesicles tend to badly damage them.  If these damaged extracellular vesicles are administered to injured animals, they tend to induce inflammation and fail to promote healing.  Aegle has demonstrated this very fact by administering extracellular vesicles (EVs) isolated by standard protocols to pigs suffering from skin injuries.  These damaged EVs did not promote healing and made the injuries worse.  However, if similarly, injured pigs were administered undamaged, whole EVs isolated with Aegle Therapeutics’ proprietary protocols, they not only accelerated healing, but they significantly decreased scarring and promoted the formation of blood vessels and hair follicles and nerve regeneration.

Aegle’s isolation process is also easily scalable and low-cost.

Aegle Therapeutics has used their whole EV preparations to treat severe dermatological disorders, with a specific focus on the treatment of burns. In May 2018, Aegle announced that the US Food and Drug Administration (FDA) approved an Investigational New Drug (IND) application. This IND will examine the use of whole EVs from mesenchymal stem cells to treat severe second degree burn patients. This is an open label dose escalation study, which means that the patients and their physicians will know that they are being treated with the experimental product, but randomly-assigned groups of patients will receive gradually increasing doses of the EVs. This clinical trial will test both safety and efficacy (a Phase 1/2a clinical trial) of Aegle Therapeutics’ lead product, AGLE-102. This clinical trial will enroll burn patients at several U.S. sites.

According to the founder and Chief Science Officer of Aegle Therapeutics, Evangelos Badiavas, M.D., Ph.D., “We are excited to be moving our EV therapy into the clinic to treat burns, an indication with a substantial unmet medical need. We believe this product has the potential for functional regeneration and organization of complex tissue structures that can enhance healing, reduce scarring, minimize contraction and improve overall cosmesis. Currently, patients with burns suffer scarring, disfigurement, loss of mobility and chronic pain. There’s a real need for better therapies.”

According to Shelly Hartman, Chief Executive Officer of Aegle, “This achievement is an important step as the company launches a Series A capital raise in 2018 to fund its clinical development.”

Aegle Therapeutics is also developing another product, AGLE-103 for the treatment of a genetic skin condition called epidermolysis bullosa (EB), which causes the skin to be fragile and blister.