International Stem Cell Corp’s Parthenogenetic Stem Cells to Be Used in A Clinical Trial to Treat Parkinson’s Disease Patients


The Australian government has recently given its approval for a clinical trial of what is almost certainly a medical first. The Carlsbad-based stem cell company, International Stem Cell Corp. (ISCO), a publicly traded biotechnology company, has developed a unique stem cell technology to address particular conditions.

The clinical trial that has been approved will examine the use the ISCO’s unique stem cell products in the treatment of Parkinson’s disease. Twelve Parkinson’s patients will receive implantations of these cells sometime in the first quarter of 2016, according to Russell Kern, ISCO’s chief scientific officer. The implanted cells will be neural precursor cells, which are slightly immature neurons that will complete their maturation in the brain, hopefully into dopamingergic neurons, which are the precise kind of neurons that die off in patients with Parkinson’s disease.

Parkinson’s disease (PD) is a progressive disorder of the nervous system that affects voluntary movement. PD develops gradually and sometimes begins with a slight tremor in only one hand, but PD may also cause stiffness or slowing of movement. PD worsens over time.

PD patients suffer from tremor, or shaking of the limbs, particularly when it is relaxed and at rest. Over time, PD reduces the ability to move and slows movement (bradykinesis) which makes simple tasks difficult and time-consuming. Muscle stiffness may occur and this limits the range of motion and causes pain. PD patients also suffer from stooping posture and balance problems and a decreased ability to perform unconscious movements. For example, they have trouble swinging their arms while they walk, blinking, or smiling. They might also experience speech problems that can range from slurring of the speech to monotone speech devoid of inflexions, or softer speech with hesitations before speaking. Writing might also become problematic.

PD is caused by the gradual death of neurons in the midbrain that produce a chemical messenger called dopamine. The drop in dopamine levels in the system of the brain that controls voluntary movement leading to the signs and symptoms of Parkinson’s disease.

Several different animal experiments with a variety different cell types have established that transplantation to dopamine-making neuronal precursors into the midbrains of laboratory animals with artificially-induced PD can reverse the symptoms of PD. Dopaminergic neurons can be derived from embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), umbilical cord blood hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and NSCs (see Petit G. H., Olsson T. T., Brundin P. Neuropathology and Applied Neurobiology. 2014;40(1):60–67). Also, since the 1980s, various cell sources have been tested, including autografts of adrenal medulla, sympathetic ganglion, carotid body-derived cells, xenografts of fetal porcine ventral mesencephalon, and allografts of human fetal ventral mesencephalon (fVM) tissues have been implanted into the midbrains of PD patients (Buttery PC, Barker RA. J Comp Neurol. 2014 Aug 15;522(12):2802-16). While the results of these trials were varied and not terribly reproducible, these studies did show that the signs and symptoms of PD could be reversed, in some people, by implanting dopamine-making neurons into the midbrains of PD patients.

ISCO has derived neural precursor cells from a completely new source. ISCO scientists have taken unfertilized eggs from human egg donors and artificially activated them so that they self-fertilize, and then begin dividing until they form a blastocyst-stage embryo from which stem cells are derived. This new class of stem cells, which were pioneered by ISCO, human parthenogenetic stem cells (hpSCs) have the best characteristics of each of the other classes of stem cells. Since these stem cells are created by chemically stimulating the oocytes (eggs) to begin division, the oocytes are not fertilized and no viable embryo is created or destroyed. This process is called parthenogenesis and parthenogenetic stem cells derived from the parthenogenetically-activated oocytes, are produced from unfertilized human egg cells.

The stem cells are created by chemically stimulating the oocytes (eggs) to begin division.  The oocytes are not fertilized and no viable embryo is created or destroyed.
The stem cells are created by chemically stimulating the oocytes (eggs) to begin division. The oocytes are not fertilized and no viable embryo is created or destroyed.

Why did ISCO decide to do this trial in Australia? According to Kern, ISCO chose to conduct their clinical trial in Australia because its clinical trial system is more “interactive,” which allows for better collaboration with Australia’s Therapeutic Goods Administration on trial design. This clinical trial, in fact, is the first stem cell trial for PD according to the clinical trial tracking site clinicaltrials.gov. The test will be conducted by ISCO’s Australian subsidiary, Cyto Therapeutics.

The approach pioneered in this clinical trial might cure or even provide an extended period of relief from the symptoms of PD. If this clinical trial succeeds, the stem cell clinical trial dam might very well break and we will see proposed clinical trials that test stem cell-based treatments for other neurodegenerative diseases such as Huntington’s disease, Lou Gehrig’s disease (ALS), frontotemporal dementia, or even Alzheimer’s disease.

ISCO has spent many years developing their parthenogenetic technology with meager financing. However the company’s total market value amounts to something close to $11.1 million, presently.

hpSCs are pluripotent like embryonic stem cells. Because they are being used in the brain, they will not be exposed to the immune system. Therefore an exact tissue type match is not necessary for this type of transplantation. In their publications, ISCO scientists have found their cells to be quite stable, but other research groups who have worked with stem cells derived from parthenogenetically-activated embryos have found such cells to be less stable than other types of pluripotent stem cells. The stability of the ISCO hpSCs remains an open question. The lack of a paternal genome might pose a safety challenge for the use of hpSCs.

Rita Vassena and her colleagues in the laboratory of Juan Carlos Izpisua Belmonte at the Salk Institute for Biological Studies in La Jolla, CA examined the gene expression patterns of mesenchymal stem cells derived from hpSCs and found that the overall gene expression patterns were similar to MSCs made from embryonic stem cells or induced pluripotent stem cells. However, upon further differentiation and manipulation, the gene expression patterns of the cells began to show more variability and further depart from normal gene expression patterns (Vassena R, et al Human Molecular Genetics 2012; 21(15): 3366-3373). Therefore, the derivatives of hpSCs might not be as stable as cellular derivatives from other types of stem cells. The good news about hpSCs established from parthenogenetic ESCs were reported to be morphologically indistinguishable from embryonic stem cells derived from fertilized embryos, and seem to show normal gene expression or even correct genomic imprinting in chimeras, when pESCs were used in tissue contribution (T.Horii, et al Stem Cells, vol. 26, no. 1, pp. 79–88, 2008).

For those of us who view the early embryo as the youngest members of the human community who have the right not to be harmed, hpSCs made by ISCO remove this objection, since their derivation does not involve the death of any embryos.

The ISCO approach to Parkinson’s is similar to that of a San Diego group called Summit for Stem Cell, which is going to use induced pluripotent stem cell derivatives. This nonprofit organization is presently raising money for a clinical trial to test the efficacy of their treatment.

Both groups intend to transplant the cells while they are still slightly immature, so that they can complete their development in the brain. Animal studies suggest that implanting immature precursors are better than transplanting mature dopaminergic neurons into the midbrain. The precursors then differentiate into dopamine-making neurons, and other cells differentiate into supportive glial cells, which support the dopamine-making neurons.

“It’s a dual action,” Kern said. “Also, neural stem cells reduce inflammation, and inflammation is huge in Parkinson’s.”

Summit 4 Stem Cell will also take a similar approach, according to stem cell scientist Jeanne Loring, a leader of the Summit 4 Stem Cell project. The cells make proper connections with the brain better when they are still maturing, said Loring, who’s also head of the regenerative medicine program at The Scripps Research Institute in La Jolla. This is all provided that Summit 4 Stem Cell can raise the millions of dollars required for the clinical trial and secure the required approvals from the U.S. Food and Drug Administration.

Loring said she views ISCO as a partner in fighting Parkinson’s. One of her former students is working for the company, she said. “The whole idea is to treat patients by whatever means possible,” Loring said.

ISCO’s choice of Australia for its streamlined regulatory process makes sense, Loring said. Her team, with U.S.-based academics and medical professionals, doesn’t have the same flexibility as ISCO in looking for clinical trial locations, she said.

Transplantation of Unique, Newly Discovered Stem Cells May Lead to Promising Stroke Therapy


Stroke treatments have seen some remarkable advances in the past few years. Stem cell treatments for stroke have even seen some successes in clinical trials, showing that stem cell transplantation aimed at neural repair after a stroke is a possible way to ameliorate the effects of stroke.

Now, collaboration between teams of American and Japanese researchers has shown that a newly-identified stem cell has the ability to successfully treat stroke in rats. When administered to rats who have suffered from an experimentally-induced stroke, MUSE or multilineage-differentiating stress-enduring cells induced the regeneration of neurons and resulted in “significant improvements in neurological and motor functions” compared to control groups that were not transplanted with MUSE cells. MUSE cells also do not cause tumors.

The study has increased the number of therapeutic arrows in the quiver of neurologists and neuroscientists and lengthens the list of cells that might one day be considered for human clinical trials if continued pre-clinical tests prove successful. Future clinical studies aimed at regenerating neurological and motor function in patients who have suffered ischemic stroke.

The paper describing this study appeared in a recent issue of Stem Cells (Sept. 2015).

“Muse cells are unique stem cells that are able to self-renew and display high-efficiency for differentiating into neuron-like cells,” explained lead author Dr. Cesar V Borlongan, Distinguished Professor and Vice-Chairman for Research at the University of South Florida (USF) College of Medicine Department of Neurosurgery and Brain Repair and Director of USF’s the Center of Excellence for Aging and Brain Repair. “Unlike mesenchymal stem cells (MSCs) that have previously been used in stem cell transplantation in stroke-related clinical trials, in the present study Muse cells were found to possess functional characteristics of neurons as they attain the attributes of the host microenvironment. When MUSEcells were transplanted into to the brains of rats modeled with stroke, they attained neuronal characteristics.”

MUSE cells are found in many different tissues, including bone marrow, skin and fat. Since these cells can be derived from dermal fibroblasts (a type of connective tissue cell that provides the structural framework for animal tissues and plays a critical role in wound healing), they can be accessed with relative ease, without the need for the painful, invasive procedures required for obtaining other kinds of stem cells. Furthermore, while some stem cells used in stem cell transplantation studies have been found to cause cancer, MUSE cells do not produce tumors and exhibit exceptional tissue repair potential when introduced into the blood stream.

Some researchers think that fetal stem cells might be better candidates for replacing lost neural circuitry. The main reason in favor of fetal stem cells is that they preferentially differentiate into neuronal cells. However, the accessibility to fetal stem cells is limited and, like embryonic stem cells, the immaturity of these cells may present safety issues, such as tumor development. Additionally, the use of fetal and embryonic stem cells has many ethical difficulties to say the least. Since MUSE cells can be derived from adult tissue rather than fetal or embryonic tissue, the ethical quandaries associated with using them is minimal.

Not only do MUSE cells also have the practical advantage of being non-tumorigenic, they are readily accessed commercially and can also be easily collected from patient skin biopsies. MUSE cells also do not have to be “induced,” or genetically manipulated in order to be used, since they already display inherent stem cell properties after isolation. MUSE cells also spontaneously home toward the stroke-damaged sites.

“Ours is the first study to show that human skin fibroblast-derived Muse cells can have neuron-like function, possess an inherent ability to assume ‘stemness’ properties, and to readily differentiate into neural-lineage cells after integration into the stroke brain,” said co-lead author Dr. Mari Dezawa, Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine in Sendai, Japan. “Our results show that Muse cells are a feasible and promising source for cell-based approaches to ischemic stroke therapy.”

Added Netrin-1 Increases Induced Pluripotent Stem Cell Production Without Affecting Stem Cell Quality


Since 2006, stem cell researchers have succeeded in generating induced pluripotent cells (iPS cells) from mature, adult cells. These cells have enormous potential applications, particularly for regenerative medicine. However, the process by which these cells are made still requires further tweaking in order to increase its efficiency and safety. Recently, two teams of researchers from Inserm, CNRS, Centre Léon Bérard and Claude Bernard Lyon 1 University have discovered a molecule that seems to favor the production of iPS cells. Their work was published in the journal Nature Communications.

Reprogramming an already specialized cell into a pluripotent stem cell was discovered in 2006 by the Japanese scientist Shinya Yamanaka. His iPS cells were capable of differentiating into any type of cell from the human body. Yamanaka and his colleagues made iPS cells by introducing into adult cells a cocktail of four genes (Oct4, Klf4, Sox2, and c-Myc). iPS cells, like embryonic stem cells, which are made from human embryos, are pluripotent, which means that they can differentiate into any mature adult cell type. iPS cells represent a promising medical advance, since they might be able to ultimately replace diseased organs with new organs that were derived from the patient’s own cells. Such technology will create tissues and organs that match the tissue types of the patient from whom the adult cells were isolated, which would eliminate all risks of transplantation rejection. The use of iPS cells would also circumvent the inherent ethical problems raised by the use of embryonic stem cells, which are derived from the destruction of human embryos.

Despite this success, cell reprogramming is besets by some problems. First of all, it is not terribly efficient; many cells undergo programmed cell death and this restricts the number of iPS cells produced. To increase the efficiencies of iPS cell production, Fabrice Lavial’s team, in collaboration with Patrick Mehlen’s team, identified new regulators of the derivation of iPS cells. They examined those genes that are regulated by the four inducing genes involved in the initiation of reprogramming. From this list of genes, they selected those genes known to have a role in programmed cell death, and whose expression varies over the course of reprogramming. This screening process yielded a gene that encodes a protein called netrin-1.

Netrin-1 is a protein naturally secreted by the body. Interestingly, netrin-1 can prevent programmed cell death, among other things. In the early days of reprogramming mouse cells, the researchers observed that their production of netrin-1 was strongly reduced, which limited the efficacy of the reprogramming process. Next, these research teams tested the effects of adding extra netrin-1 to cells during the early phases of reprogramming. This increased the quantity of iPS cells produced from mouse cells. When they repeated this experiment with human cells, the reprogramming process generated fifteen times more iPS cells than those produced by protocols without added netrin-1.

From a therapeutic point of view, it was important to determine whether this treatment affected the quality of cell reprogramming. Genomic tests, however, failed to show any deleterious effects of the use of netrin-1 on reprogrammed cells. “According to several verifications, netrin-1 treatment does not seem to have any impact on the genomic stability the iPS cells or on their ability to differentiate into other tissues,” says Fabrice Lavial, Inserm Research Fellow.

These research teams continue to test the effects of netrin-1 on the reprogramming of other types of cells. They would like to gain a better understanding of the mode of action of this molecule in stem cell physiology.

University of Iowa Team Creates Insulin-Producing Cells from Skin Cells


A research team from the University of Iowa has designed a protocol that can create insulin-producing cells that help normalize blood-sugar levels in diabetic mice from skin cells. This discovery represents one of the first steps toward developing patient-specific cell replacement therapy for Type 1 diabetes. This research, which was led by Nicholas Zavazava from the department of internal medicine, was published in the journal PLoS ONE.

Zavazava and his coworker used human skin cells taken from punch biopsies and reprogrammed them to into induced pluripotent stem cells. These induced pluripotent stem cells were then differentiated in culture into pancreatic insulin-producing beta cells.

In culture, Zavazava’s cell made insulin in response to increased concentrations, but when they were implanted into diabetic mice, these cells responded to glucose, secreted insulin and worked to lower the blood-sugar levels in the mice to normal or near-normal levels.

Mind you, these induced pluripotent stem cell-derived beta cells were not as effective as pancreatic cells in controlling blood sugar levels, according to Zavazava in a UI news release. However, Zavazava and his team views the cells’ response in mice as an “encouraging first step” toward the goal of generating effective insulin-producing cells that potentially could be used to not just treat but cure Type 1 diabetes in humans.

“This raises the possibility that we could treat patients with diabetes with their own cells,” Zavazava said. “That would be a major advance, which will accelerate treatment of diabetes.”

Zavazava is also a member of UI’s Fraternal Order of Eagles Diabetes Research Center. This center is one of several groups whose aim is to create an alternative source of insulin-producing cells that can replace the pancreatic beta cells that die off in people with Type 1 diabetes.

According to the UI news release, this study is the first to use human induced pluripotent stem cells instead of embryonic stem cells to generate insulin-producing pancreatic beta cells. This protocol has the advantage of creating beta cells from a patient’s own cells include. This would eliminate the need to wait for a donor pancreas, since pancreas transplants are an option for treating Type 1 diabetes, but the demand for transplants is much greater than the availability of organs from deceased donors. The use of induced pluripotent stem cells would also eliminate the need for transplant patients to take immunosuppressive drugs. Finally, the use of induced pluripotent stem cells would also avoid the ethical concerns with treatments based on embryonic stem cells.

Grafted Stem Cells Display Robust Growth in Spinal Cord Injury Model


University of San Diego neuroscientists have used an animal model of spinal cord injury to test the ability of engrafted stem cells to regenerate damaged nerves. Mark Tuszynski and his team built on earlier work with implanted neural stem cells and embryonic stem cell-derived neural stem cells in rodents that had suffered spinal cord injuries.

In this study, Tuszynski and others used induced pluripotent stem cells that were made from a 86-year-old male. This shows that skin cells, even from human patients who are rather elderly, have the ability to be reprogrammed into embryonic stem cell-like cells. These cells were differentiated into neural stem cells and then implanted into the spinal cords of spinal cord-injured rodents.

The injured spinal cord is a very hostile place for implanted cells. Inflammation in the spinal cord summons white blood cells to devour cell debris. White blood cells are rather messy eaters and they release enzymes and toxic molecules that can kill off nearby cells. Also, regenerating cells run into a barrier made by support cells called glial cells that inhibit regenerating neurons from regenerating. Thus, the injured spinal cord is quite the toxic waste dump.

To get over this, Tuszynski and his coworkers treated their induced pluripotent stem cell-derived neural stem cells with growth factors. In fact, when the cells were implanted into the animal spinal cords, they were embedded in a matrix that contained growth factors. After three months, Tuszynski and his colleagues observed extensive axonal growth projecting from grafted neurons that reached long distances in both directions along the spinal cord from the brain to the tail end of the spinal cord. These sprouted axons appeared to make connections with the existing rat neurons. Importantly, these axons extended from the site of the injury, which is astounding given that the injured area of the spinal cord has characteristics that are inimical to neuronal and axon growth.

Even though Tuszynski and others showed that neural stem cells made from embryonic stem cells can populate the damaged spinal cord, using induced pluripotent stem cell-derived neural stem cells has an inherent advantage since these cells are less likely to be rejected by the patient’s immune system. Furthermore, the induced pluripotent stem cell-derived neural stem cells showed dramatic growth in the damaged spinal cord, but the implanted animals did not regain the use of their forelimbs. The implanted human cells were fairly young when the implanted animals were tested. Therefore, they might need to mature before they could restore function to the implanted animals.

“There are several important considerations that future studies will address,” Tuszynski said. “These include whether the extensive number of human axons make correct or incorrect connections; whether the new connections contain the appropriate chemical neurotransmitters to form functional connections; whether connections once formed are permanent or transient; and exactly how long it takes human cells to become mature. These considerations will determine how viable a candidate these cells might before use in humans.”

Tuszynski and his group hope to identify the most promising neural stem cell type for repairing spinal cord injuries. Tuszynski emphasized their commitment to a careful, methodical approach:

“Ultimately, we can only translate our animal studies into reliable human treatments by testing different neural stem cell types, carefully analyzing the results, and improving the procedure. We are encouraged, but we continue to work hard to rationally to identify the optimal cell type and procedural methods that can be safely and effectively used for human clinical trials.”

Heart Muscle Cells Produced from Induced Pluripotent Stem Cells Repair Heart Attacks in Pigs


When heart muscle cells are made from embryonic stem cells, they integrate into the heart and form proper connections with other heart muscle cells. Such experiments have been conducted in mice, guinea pigs, and nonhuman primates (i.e. monkeys). Chong and others earlier this year (Nature (2014) 510, 273-277) implanted heart muscle cells produced from embryonic stem cells into the hearts of nonhuman primates that had suffered from heart attacks. There was extensive evidence of engraftment of these cells, remuscularization of the heart, and electrical synchronization 2 to 7 weeks after transplantation. However, despite these successes, the hearts of some of these animals also showed abnormal heart beat patterns (known as arrhythmias). Such a problem has also been observed in other laboratory animals as well (see my book The Stem Cell Epistles), and this problem has to be addressed before derivatives of pluripotent stem cells can be used to treat damaged hearts (pluripotent means capable of differentiating into all the mature adult cell types).

Jianyi Zhang and his colleagues at the University of Minnesota have used induced pluripotent stem cells made from human skin cells to produce heart muscle cells that were used to treat pigs that had suffered from induced heart attacks.  Their results differed slightly from those of Chong and others.

Zhang and others noted that implanted heart muscle cells typically survive better if they are implanted with blood vessel cells (endothelial cells or ECs).  This was first shown in culture by Xiong and others in 2012 (Circulation Research 111, 455-468), but other work has confirmed this.  That is, Zhang’s coworkers in his laboratory co-transplanted heart muscle cells made from induced pluripotent stem cells with endothelial cells and smooth muscle cells (which are also a part of blood vessels), and saw that the co-transplanted cells survived much better than heart muscle cells that were transplanted without these other cell types.

On the basis of these experiments, Zhang and his crew decided that implanted heart muscle cells would do much better if they were implanted into pig hearts if they were implanted with endothelial and smooth muscle cells.  This was the hypothesis that Zhang and others wanted to test in this paper (which was published in Cell Stem Cell, Dec 4, 2014, 750-761).

Skin biopsies from human volunteers were used as a source of skin cells that were then genetically engineered and then cultured to form human induced pluripotent stem cells (hiPSCs).  These cultured hiPSCs were differentiated into heart muscle cells by means of the “Sandwich method,” which yielded beating heart muscle cells in about 30 days.  Additionally, their hiPSC lines were differentiated into smooth muscle and endothelial cells as well.

Next, Zhang and his colleagues and collaborators used 92 pigs and subjected them to experimentally-induced heart attacks.  Why pigs?  Pigs are a larger animal than rodents, and their hearts are larger and beat much slower than the hearts of rats and mice.  Therefore, they are a more expensive, but better experimental model system for the human heart.  Nevertheless, these pigs were divided into six different groups (3 pigs died from the procedure, so there were 89 pigs involved in this experiment).  Animals in the first group or SHAM group underwent the surgery to induce a heart attack, but no heart attack was induced.  The second group was called the MI group and this group received no other interventions after surgery.  The Patch group received a fibrin patch over the site of injury, but no cells.  The CM + EC + SMC group received injections of 2 million heart muscle cells, two million endothelial cells, and two million smooth muscle cells directly into the injured portion of the heart.  The Cell + Patch group received all three cell types in a fibrin patched that was imbued with a growth factor called Insulin-like growth Factor-1 (IGF-1) that had been loaded into microspheres.  This causes the growth factor to be released gradually and exert its effects over a much greater period of time.

That’s a lot of information so let’s review – six groups: 1) SHAM (no heart attack; 2) MI (heart attack and no treatment); 3) Patch (just the fibrin patch); 4) Cells + Patch (fibrin patch with the three cell types); 5) Cells (cells, but no patch), and a final group cells Patch + CM (just heart muscle cells in the patch).

Animals were evaluated one week after the heart attack and four weeks after their heart attacks. I am uncertain how soon after the heart attack the treatments were given, but in the paper it reads to me as though the treatments were given right after the heart attacks had been induced.  Because all implanted cells were engineered to glow in the dark, the number of surviving cells could be counted and tracked.

Only 4.2% of the cell survived in the Cells group, up to 9% of the cells in the Cell + Patch group survived.  32% of the cells in the CM + Patch group survived.  Thus, it seemed as though the presence of the other cell types did increase the survival of the heart muscle cells and the patch also increased cell survival rates.  Secondly, the heart function of all the treated groups was better than the MI group, but the hearts treated with Cells + Patch were clearly superior to all the others, with the exception of the SHAM group.  The hiPSC-derived heart muscle cells also clearly engrafted into the hearts of the pigs, but the big surprise in this paper is that THERE WERE NO INDICATIONS OF ARRHYTHMIAS!!!  Apparently the manner in which these hiPSC-derived heart muscle cells integrated and adapted to the native heart in such as way as to preclude irregular electrical activity.  Another indicator measured was ratio of phosphocreatine to ATP.  If that sounds like a language from outer space, it simply means a measurement of the efficiency of muscle mitochondria (the part of the cell that makes all the energy).  Again the Cells + Patch hearts had significantly more efficient mitochondria, and, hence, better energy production than the other hearts.  Damage to mitochondria also tends cause cells to up and die, which means that these cells were in better health that those from the MI group.

This paper shows that an ingenious tissue engineering innovation that uses a fibrin patch and a a combination of cells, not just heart muscle cells can significantly increase the healing after a heart attack.  Also, even though neither embryonic stem cell-derived cells nor iPSC-derived cells are ready for clinical trials, this paper shows that iPSCs are not as far behind iPSCs as some authors have suggested.  Furthermore, because iPSCs would not be subject to immunological rejection, they have an inherent superiority over embryonic stem cells.  The problem comes with the time required to make iPSCs and then derived heart muscle cells from them, which might put it outside the time window for treat of an acute heart attack.

Embryonic Stem Cells From Cloned Embryos Vs Induced Pluripotent Stem Cells: Let the Debate Begin


In May of 2013, Shoukhrat Mitalipov and his coworkers from the Oregon Health and Science University, reported the derivation of human embryonic stem cells from cloned human embryos. Other stem cell scientists have confirmed that Mitalipov’s protocol works as well as he says it does.

Mitalipov and others have also examined the genetic integrity of embryonic stem cells made from cloned human embryos and induced pluripotent stem cells made from mature adult cells through genetic engineering and cell culture techniques. This paper was published in Nature in June 2014 and used genetically matched sets of human Embryonic Stem cells made from embryos donated from in vitro fertilization clinics, induced Pluripotent Stem cells and nuclear transfer ES cells (NT-ES cells) derived by somatic cell nuclear transfer (SCNT). All three of these sets of stem cells were subjected to genome-wide analyses. These analyses sowed that both NT-ES cells and iPS cells derived from the same somatic cells contained comparable numbers of genetic variations. However, DNA methylation, a form of DNA modification for regulatory purposes and gene expression profiles of NT-ES cells corresponded closely to those of IVF ES cells. However, the gene expression provide of iPS cells differed from these other two cell types and iPS cells also retained residual DNA methylation patterns typical of the parental somatic cells. From this study, Mitalipov stated that “human somatic cells can be faithfully reprogrammed to pluripotency by SCNT (that means cloning) and are therefore ideal for cell replacement therapies.”

Now a new study by Dieter Egli of the New York Stem Cell Foundation (NYSCF) in New York City, which included Mitalipov as a collaborator, has failed to demonstrate significant genetic differences between iPS cells and NT-ES cells. This is significant because Eglin has long been a rather vigorous proponent of cloning to make patient-specific stem cells. Egli gave an oral preview of his forthcoming paper on October 22nd, at the NYSCF annual conference. Egli told his audience, “This means that all of you who are working on iPS cells are probably working with cells that are actually very good. So I have good news for you,” he told them, eliciting murmurs and chuckles. “What this exactly means for the SCNT program, I don’t know yet.”

Egli and colleagues used skin cells from two people—a newborn and an adult—to create both stem cells from cloned embryos (using donor eggs) and iPS cells. Then they compared the genomes of these two types of cell lines with the genomes of the original skin cells in terms of genetic mutations, changes in gene expression, and differences in DNA methylation. Both methods resulted in about 10 mutations compared with the average genome of the mature source cells. These changes didn’t necessarily happen during reprogramming, however, Egli says, since many of these mutations were likely present in the original skin cells, and some could have arisen during the handling of cells before they were reprogrammed.

Both types of stem cells also carried a similar amount of methylation changes. Overall, the method didn’t seem to matter, Egli and his team concluded. Because he is a longtime proponent of SCNT, Egli says it would have been “more attractive” to reveal significant differences between the two kinds of stem cells. “This is simply not what we found.”

Now it would be premature to conclude that iPS cells are as good as NT-ES cells for regenerative purposes, but this certainly seems to throw a monkey wrench in the cloning bandwagon. Cloning would be quite complicated and expensive and also requires young, fertile women to donate their eggs. These egg donors must undergo potentially risky procedures to donate their eggs. Jennifer Lahl’s documentary Eggsploitation provides just a few of some of the horror stories that some women experienced donating their eggs. The long-term effects of this procedure is simply not known and asking young women to do this and potentially compromise their health or future fertility seems beyond the pale to me.

Alternatively, iPS technology keeps improving and may come to the clinic sooner than we think. Also, is a cloned embryo essentially different from one made through IVF or “the old-fashioned way.?” This whole things seems to me to involved the creation of very young human beings just so that we can dismember them and use them as spare parts. Such a practice is barbaric in the extreme.

For those who are interested, please see chapters 18 and 19 of my book The Stem Cell Epistles to read more about this important topic.