Stem Cell-Based Skin Graft for Severe Burns


Severe wounds are typically treated with full thickness skin grafts. Some new work by researchers from Michigan Tech and the First Affiliated Hospital of Sun Yat Sen University in Guangzhou, China might provide a way to use a patient’s own stem cells to make split thickness skin grafts (STSG). If this technique pans out, it would eliminate the needs for donors and could work well for large or complicated injury sites.

This work made new engineered tissues were able to capitalize on the body’s natural healing power. Dr. Feng Zhao at Michigan Tech and her Chinese colleagues used specially engineered skin that was “prevascularized, which is to say that Zhao and other designed it so that it could grow its own veins, capillaries and lymphatic channels.

This innovation is a very important one because on of the main reasons grafted tissues or implanted fabricated tissues fail to integrate into the recipient’s body is that the grafted tissue lacks proper vascular support. This leads to a condition called graft ischemia. Therefore, getting the skin to form its own vasculature is vital for the success of STSG.

STSG is a rather versatile procedure that can be used under unfavorable conditions, as in the case of patients who have a wound that has been infected, or in cases where the graft site possess less vasculature, where the chances of a full thickness skin graft successfully integrating would be rather low. Unfortunately, STSGs are more fragile than full thickness skin grafts and can contract significantly during the healing process.

In order to solve the problem of graft contraction and poor vascularization, Zhao and others grew sheets of human mesenchymal stem cells (MSCs) and mixed in with those MSCs, human umbilical cord vascular endothelial cells or HUVECs. HUVECs readily form blood vessels when induced, and growing mesenchymal stem cells tend to synthesize the right cocktail of factors to induce HUVECs to form blood vessels. Therefore this type of skin is truly poised to form its own vasculature and is rightly designated as “prevascularized” tissue.

Zhao and others tested their MSC/HUVEC sheets on the tails of mice that had lost some of their skin because of burns. The prevascularized MSC/HUVEC sheets significantly outperformed MSC-only sheets when it came to repairing the skin of these laboratory mice.

When implanted, the MSC/HUVEC sheets produced less contracted and puckered skin, lower amounts of inflammation, a thinner outer skin (epidermal) thickness along with more robust blood microcirculation in the skin tissue. And if that wasn’t enough, the MSC/HUVEC sheets also preserved skin-specific features like hair follicles and oil glands.

The success of the mixed MSC/HUVEC cell sheets was almost certainly due to the elevated levels of growth factors and small, signaling proteins called cytokines in the prevascularized stem cell sheets that stimulated significant healing in surrounding tissue. The greatest challenge regarding this method is that both STSG and the stem cell sheets are fragile and difficult to harvest.

An important next step in this research is to improve the mechanical properties of the cell sheets and devise new techniques to harvest these cells more easily.

According to Dr. Zhao: “The engineered stem cell sheet will overcome the limitation of current treatments for extensive and severe wounds, such as for acute burn injuries, and significantly improve the quality of life for patients suffering from burns.”

This paper can be found here: Lei Chen et al., “Pre-vascularization Enhances Therapeutic Effects of Human Mesenchymal Stem Cell Sheets in Full Thickness Skin Wound Re-pair,” Theranostics, October 2016 DOI: 10.7150/ thno.17031.

Activation of the Proteasome Enhances Stem Cell Function and Lifespan


As we age, the capacity of our stem cells to heal and replace damaged cells and tissues decline. This age-associated decrease in adult stem cell function seems to be a major contributor to the physiological decline during aging. A new paper, by Efstathios Gonos and his colleagues at the National Hellenic Research Foundation in Athens, Greece gives one possible technique that might improve the function of stem cells in an aging body.

Cells contain a multiprotein complex called the “proteasome” that degrades unneeded or defective proteins. The proteasome controls protein half-lives, function, and the protein composition of the cell. Functional failure of the proteasome has been linked to various biological phenomena including senescence and aging. The role of the proteasome in stem cells aging, however has received little attention to date.

Proteasome figure

Gonos and his coworkers used mesenchymal stem cells from umbilical cord Wharton’s Jelly and human fat. Because they were able to compare the proteasome activity in very young and aged stem cells, Gonos and others discovered a significant age-related decline in proteasome content and activity between these two types of stem cells. The proteasome from Warton’s Jelly mesenchymal stem cells were consistently more active and displayed more normal function and activity than those from human fat.  In fact, not only were the protease activities of the proteasomes from the aging stem cells decreased, but they also displayed structural alterations.

These differences in proteasomal activity were not only reproducible, but when the proteasome of young stem cells were compromised, the “stemness,” or capacity of the stem cells to act as undifferentiated cells, was negatively affected.

Even more surprisingly, once after mesenchymal stem cells from human donors lost their ability to proliferate and act as stem cells (their stemness, that is) their decline could be counteracted by artificially activating their proteasomes. Activating the proteasome seems to help the cell “clean house,” get rid of junk proteins, and rejuvenate themselves.

proteasomes-and-stem-cells

Gonos and his team found that the stem cell-specific protein, Oct4, binds to the promoter region of the genes that encode the β2 and β5 proteasome subunits. Oct4 might very well regulate the expression of these proteasome-specific genes.

From this paper, it seems that a better understanding the mechanisms regulating protein turnover in stem cells might bring forth a way to stem cell-based interventions that can improve health during old age and lifespan.

This paper was published in Free Radical Biology and Medicine, Volume 103, February 2017, Pages 226–235.

Targeting EGFL6 Protein Halts Growth and Spread of Ovarian Cancer


Dr. Ronald J. Buckanovich, professor of hematology/oncology and gynecologic oncology at the University of Michigan Medical School, and his colleagues have identified a protein that help ovarian cancer cells multiply and spread to other organs.  When he and his coworkers inhibited this protein with an antibody they were able to stop the spread of ovarian cancer cold.

The EGFL6 or epidermal growth factor like 6 precursor protein, which is also known as MAEG, maps to human Xp22 chromosome.  The EGFL6 protein is expressed primarily in fetal tissues and during early development (see Yeung G., et al., (1999) Genomics 62, 304307; and Buchner G., et al., (2000) Genomics 65, 1623).  The expression of MAEG has also been detected in several tissues, including the dermis of the trunk, hair follicles, and the mesenchyme of the cranio-facial region (see Buchner G., and others, (2000) Mech. Dev. 98, 179182).  EGFL6 protein has been proposed as a possible biomarker in ovarian cancer (Buckanovich R. J., and others, (2007) J. Clin. Oncol. 25, 852861).

In this paper, which appeared in Cancer Research, Buckanovich and others amplified the expression of EGFL6 in ovarian cancer cells.  Increased EGFL6 expression stimulated cancer growth some two-three times.  This effect was observed in cultured ovarian cancer cells and in a mouse model of ovarian cancer.  Conversely, elimination of EGFL6 greatly reduced ovarian cancer growth, decreasing the rate of growth some four-fold.

EGFL6 specifically acts in cancer stem cells.  To review, in tumors, not all cancer cells are the same.  Inside malignant tumors or even among circulating cancerous cells (as in the case of leukemia) there are usually a variety of different types of cancer cells.  The stem cell theory of cancer proposes that among cancerous cells, a small population among them act as stem cells that reproduce themselves and sustain the cancer.  Cancer stem cells, therefore, are like normal stem cells that renew and sustain our organs and tissues.  Therefore, cancer cells that are not stem cells can certainly adversely affect health, but they cannot sustain the cancer long-term.  Therefore, cancer stem cells fuel the growth and spread of cancers and also are often resistant to chemotherapy and radiation treatments.

Further experiments by Buckanovich and his colleagues showed that EGFL6 cause cancer stem cells to divide asymmetrically so that the one of the daughter cells remains a cancer stem cell while the other daughter cell is a cancer cell that can affect the patient but cannot sustain the cancer. This asymmetric cell division also generates a good deal of diversity among cancer cells.

Buckanovich noted: “What this means is that the stem cell population remains stable.  But the daughter cells, which can have a burst of growth, multiply, and allow the cancer to grow.”.

EGFL6 does more than just promote cancer cell proliferation.  EGFL6 is also a promoter of cancer stem cell migration.  When blood vessels were engineered to express EGFL6, tumor metastasis (spread) was even more robust.

Treatment of tumor-afflicted mice with an antibody that specifically binds to EGFL6 and inactivates it caused a 35% reduction in cancer stem cells and significantly reduced overall tumor growth.  Additionally, the antibody also prevented tumor metastasis.

Buckanovich thinks that targeting EGFL6 might be a potential therapy for women with stage 3 ovarian cancer.  Such a treatment might control the growth and spread of ovarian cancers.

Dr. Buckanovich added: “The bigger implication is for women at high risk of ovarian cancer.  These patients could be treated before cancer develops, potentially blocking cancer from developing or preventing it from spreading.  If cancer did develop, it could be diagnosed at an early stage, which would improve patient outcomes.”.

The next step for Buckanovich and his colleagues is developing an antibody that can properly work in human cancer patients.

Stem Cell-Derived Smooth Muscle Cells Help Restructure Urethral Sphincter Muscles in Rats


Stress urinary incontinence affects 25%-50% of the female population and is defined as the leakage of the bladder upon exertion. The exertions that can cause the bladder to leak can be as simple as laughing, coughing, sneezing, hiccups, yelling, or even jumping up and down. Stress urinary incontinence costs Americans some $12 billion a year and also causes a good deal of embarrassment and compromises quality of life. Unsurprisingly, stress urinary incontinence also is associated with an increased incidence of anxiety, stress, and depression.

In most cases of stress urinary incontinence, injury to the internal sphincter muscles of the urethra or to the nerves that innervate these muscles (both smooth and voluntary muscles) significantly contribute to the condition. Conservative management of stress urinary incontinence can work at first, but can fail later on. The other option is corrective surgery that reconstructs the urethral sphincter and increases urethral support. However, even though such surgeries can and often do work, recurrence of the incontinence is rather common. Is there a better way?

Yan Wen from Stanford University School of Medicine and colleagues and collaborators from College of Medicine of Case Western Reserve in Cleveland, Ohio, Southern Medical University in Guangzhou, China, and Montana State University have used a novel stem cell-based technique to treat laboratory Rowett nude rats that had a surgically-induced form of stress urinary incontinence. While the results are not overwhelming, they suggest that a stem cell-based approach might be a step in the right direction.

Wen and others used a human embryonic stem cell line called H9 and two different types of induced pluripotent stem cell lines to make, in culture, human smooth muscle progenitor cells (pSMCs). Fortunately, protocols for differentiating pluripotent stem cells into smooth muscle cells is well worked out and rather well understood. These pSMCs were also tagged with a firefly luciferase gene that allowed visualization of the cells after implantation.

Six groups of rats were treated in various ways. The first group had stress urinary incontinence and were only treated with saline solutions. The second group of animals also had stress urinary incontinence and were treated with cultured human pSMCs that were derived from human bladders. The third group of animals also had stress urinary incontinence and were treated with pSMCs made from H9 human embryonic stem cells. The next two groups also had stress urinary incontinence and were treated with two different induced pluripotent stem cell lines; one of which was induced with a retroviral vector and the second of which was made with episomal DNA. Both lines were originally derived from dermal fibroblasts. The final group of rats did not have stress urinary incontinence and were used as a control group.

The cells were introduced into the mice by means of injections into the urethra under anesthesia. Two million cells were introduced in each case, three weeks after the induction of stress urinary incontinence. All animals were examined five weeks after the cells were injected into the animals.

Because the cells were tagged with firefly luciferase, the animals could be given an injection of luciferin, which is the substrate for luciferase. Luciferase catalyzes a reaction with luciferin, and the cells glow. This glow is easily detected by means of a machine called the Xenogen Imaging System. Such experiments showed that the injected cells did not survive terribly well, and by 9 days after the injections, they were usually not detectable. Two rats that had been injected with retrovirally-induced induced pluripotent stem cell-derived pSMCs lasted until 35 days after injection, but these rats were the exception and not the rule.

Did the cells integrate into the urethral sphincter by the signal is too low to be detected using luciferase? The answer to this question was certainly yes, but the amount of integration was nothing to write home about. Small patches of cells showed up in the urethra sphincters that expressed human gene products, and therefore, had to be derived from the injected cells.

In vivo survival of transplanted pSMCs in RNU rats. (A): The RV-iPSC pSMCs were periurethrally injected into the rats and monitored with BLI. (B): At day 12, a small number of the transplanted cells were detected in the proximal rat urethra. The transplanted human cells were determined by positive staining of HuNuclei and smoothelin. (C): Gene expression of human ERV-3 in rat urethras 5 weeks after cell transplantation. Y-axis on left shows the scale for ERV-3 copy numbers from tissue samples. Each human cell contains one copy of ERV-3 transcript; hence, the number of copies is equal to the number of cells. Y-axis on right shows the ERV-3 copy numbers of the standard cell samples. The cell numbers in the standard graph are 0.5 × 103, 1 × 103, 2 × 103, 4 × 103, 8 × 103, and 10 × 103 (red dots). ERV-3 amplifications in all pSMC-treated groups were very low. Abbreviations: BLI, bioluminescent imaging; bSMC, bladder smooth muscle cell; DAPI, 4′,6-diamidino-2-phenylindole; Epi, episomal plasmid; ERV-3, endogenous retrovirus group 3; H&E, hematoxylin and eosin; Hu, human; HuNuclei, human nuclei; iPSC, induced pluripotent stem cell; pSMCs, smooth muscle progenitor cells; RNU, Rowett Nude; RV, retrovirus vector.
In vivo survival of transplanted pSMCs in RNU rats. (A): The RV-iPSC pSMCs were periurethrally injected into the rats and monitored with BLI. (B): At day 12, a small number of the transplanted cells were detected in the proximal rat urethra. The transplanted human cells were determined by positive staining of HuNuclei and smoothelin. (C): Gene expression of human ERV-3 in rat urethras 5 weeks after cell transplantation. Y-axis on left shows the scale for ERV-3 copy numbers from tissue samples. Each human cell contains one copy of ERV-3 transcript; hence, the number of copies is equal to the number of cells. Y-axis on right shows the ERV-3 copy numbers of the standard cell samples. The cell numbers in the standard graph are 0.5 × 103, 1 × 103, 2 × 103, 4 × 103, 8 × 103, and 10 × 103 (red dots). ERV-3 amplifications in all pSMC-treated groups were very low. Abbreviations: BLI, bioluminescent imaging; bSMC, bladder smooth muscle cell; DAPI, 4′,6-diamidino-2-phenylindole; Epi, episomal plasmid; ERV-3, endogenous retrovirus group 3; H&E, hematoxylin and eosin; Hu, human; HuNuclei, human nuclei; iPSC, induced pluripotent stem cell; pSMCs, smooth muscle progenitor cells; RNU, Rowett Nude; RV, retrovirus vector.

The exciting part about these results, however, was that when Wen and others examined the rat urethral sphincters for the presence of things like elastin and other proteins that make for a healthy urethral sphincter, there was a good deal of elastin, but it was not human elastin but rat elastin. Therefore, this elastin synthesis was INDUCED by the implanted cells even though it was not made by the implanted cells. Instead, the implanted cells seemed to signal to the native cells to beef up their own production of sphincter-specific gene products, which made from a better sphincter. This was not the case in animals that received injections of human pSMCs derived from human bladders.

Assessment of elastin fibers in the proximal urethra of the rat. (A): Representative images of cross-section of proximal urethra with Weigert’s Resorcin-Fuchsin’s elastin and van Gieson’s collagen staining. Elastic fiber shown as dark blue, collagen as red pink, and other tissue elements as yellow. Scale bars = 100 µm. (B): Quantification of elastin fibers was assessed using Image-Pro Plus software and expressed as a percentage of the arbitrary ROIs. Each bar represents the mean value ± SEM. Abbreviations: bSMC, human bladder smooth muscle cells; H9-pSMC, surgery plus H9-pSMC injection; Hu-bSMC, surgery plus injection of human bladder smooth muscle cells; pSMCs, smooth muscle progenitor cells; Pure control, no surgery and no treatment; ROIs, regions of interest; Sham saline, surgery plus saline injection.
Assessment of elastin fibers in the proximal urethra of the rat. (A): Representative images of cross-section of proximal urethra with Weigert’s Resorcin-Fuchsin’s elastin and van Gieson’s collagen staining. Elastic fiber shown as dark blue, collagen as red pink, and other tissue elements as yellow. Scale bars = 100 µm. (B): Quantification of elastin fibers was assessed using Image-Pro Plus software and expressed as a percentage of the arbitrary ROIs. Each bar represents the mean value ± SEM. Abbreviations: bSMC, human bladder smooth muscle cells; H9-pSMC, surgery plus H9-pSMC injection; Hu-bSMC, surgery plus injection of human bladder smooth muscle cells; pSMCs, smooth muscle progenitor cells; Pure control, no surgery and no treatment; ROIs, regions of interest; Sham saline, surgery plus saline injection.

Because these mice were sacrificed five weeks after the injections, Wen and others could not assess the urethral function of these animals. Therefore, it is uncertain if the improved tissue architecture of the urethral sphincter properly translated into improved function even though it is reasonable to assume that it would. Having said that, it is possible that the experiments that detected the presence of increased amounts of elastin and collagen in the sphincters of these rats was complicated by the presence of bladder tissue in the preparations. Since bladder tissue was included in all trials of this experiment, it is unlikely that bladder tissue is the sole cause of increase elastin and collagen in the stem cell-treated rats. Secondly, rat regenerative properties may not properly match the regenerative properties in older human patients. Here again, unless such an experiment is attempted in larger animal models and then in human patients, we will never know if this procedure is viable for regenerative treatments in the future.

For now, it is an interesting observation, and perhaps a promising start to might someday become a viable regenerative treatment for human patients.

This paper appeared in Stem Cells Translational Medicine, vol 5, number 12, December 2016, pp. 1719-1729.

Bone Marrow Mesenchymal Stem Cells Spontaneously Make Cartilage After Blockage of VEGF Signaling


Bone marrow-derived mesenchymal stem cells (MSCs) can be induced to make cartilage by incubating the cells with particular growth factors.  Unfortunately, batches of MSCs show respectable variability from patient-to-patient.  Therefore the growth factor-dependent method suffers from poor efficacy, limited reproducibility from batch-to-batch, and the cell types that are induced are not always terribly stable.  Finding a better way to make cartilage would certainly be a welcome addition to regenerative treatments,

Cartilage that coats the ends of bones is known as articulate cartilage, and articular cartilage lacks blood vessels.  Therefore, is it possible that inhibiting blood vessel formation could conveniently push MSCs to differentiate into cartilage-making chondrocytes?

A new paper by Ivan Martin and Andrea Basil from the University Hospital Basel and their colleagues have used this very strategy to induce cartilage formation in MSCs from bone marrow.

Martin and others isolated MSCs from bone marrow aspirates from human donors.  These cultured human MSCs were then genetically engineered with modified viruses to express a receptor for soluble vascular endothelial growth factor (VEGF) that binds this growth factor, but fails to induce any intracellular signals.  Such a receptor that binds the growth factor but does not induce any biological effects is called a “decoy receptor,” and decoy receptors efficiently sequester or vacuum up all the endogenous VEGF.  VEGF is the major blood vessel-inducing growth factor and it is heavily expressed during development, by cancer cells, and during healing.

After expressing the decoy VEGF receptor in these human MSCs, these genetically engineered cells were grown on collagen sponges and then implanted in immunodeficient mice.  If the implanted MSCs were not genetically engineered to express decoy VEGF receptors, they induced for formation of vascularized fibrous tissue.  However, the implantation of genetically engineered MSCs that expressed the decoy VEGF receptor efficiently and reproducibly differentiated into chondrocytes and formed hyaline cartilage. This is significant because headline cartilage is the very type of cartilage found at articular surfaces where the ends of bones come together to form joints.

In vivo chondrogenesis. Histological staining with Safranin-O for glycosaminoglycans and immunohistochemistry for type II collagen of engineered tissue generated by naïve (control) or sFlk-1 MSCs after 4 (A) or 12 (B) weeks in vivo. Fluorescence staining with DAPI (in blue) and a specific anti-human nuclei antibody (in red) of constructs generated by control or sFlk-1 MSCs after 4 (A) or 12 (B) weeks in vivo. Scale bar = 100 µm. Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; MSC, bone marrow-derived mesenchymal stromal/stem cell.
In vivo chondrogenesis. Histological staining with Safranin-O for glycosaminoglycans and immunohistochemistry for type II collagen of engineered tissue generated by naïve (control) or sFlk-1 MSCs after 4 (A) or 12 (B) weeks in vivo. Fluorescence staining with DAPI (in blue) and a specific anti-human nuclei antibody (in red) of constructs generated by control or sFlk-1 MSCs after 4 (A) or 12 (B) weeks in vivo. Scale bar = 100 µm. Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; MSC, bone marrow-derived mesenchymal stromal/stem cell.

This articular cartilage was quite stable and showed no signs of undergoing the chondrocytes enlargement found in terminally differentiated cartilage that is ready to form bone.  This stability was maintained for up to 12 weeks.

In vivo cartilage stability. Immunohistochemistry for type X collagen, BSP, and MMP-13 on sections of hypertrophic cartilage generated in vitro by MSCs (as a positive control) and on sections of the cartilaginous constructs generated in vivo by sFlk1 MSCs 12 weeks after implantation. Scale bar = 50 µm. Abbreviations: BSP, bone sialoprotein; MMP-13, metalloproteinase-13; MSC, bone marrow-derived mesenchymal stromal/stem cell.
In vivo cartilage stability. Immunohistochemistry for type X collagen, BSP, and MMP-13 on sections of hypertrophic cartilage generated in vitro by MSCs (as a positive control) and on sections of the cartilaginous constructs generated in vivo by sFlk1 MSCs 12 weeks after implantation. Scale bar = 50 µm. Abbreviations: BSP, bone sialoprotein; MMP-13, metalloproteinase-13; MSC, bone marrow-derived mesenchymal stromal/stem cell.

Why did inhibition of VEGF signaling induce cartilage?  Inhibition of angiogenesis induced low oxygen tensions, which activated a growth factor called transforming growth factor-β.  Activation of the TGF-beta pathway robustly enhanced the formation of articular cartilage.

In vitro chondrogenesis at different oxygen tensions. Histological staining with Safranin-O and immunohistochemistry for type II collagen on constructs generated in vitro by naïve MSC cultured with (A) or without (B) TGFβ3 supplementation at 2% or 20% of oxygen tension. Scale bar = 50 µm. Expression levels of the mRNA for type II and X collagen, Gremlin-1, IHH TGFβ1 were quantified in pellets generated by naïve bone marrow-derived mesenchymal stromal/stem cells (C, D) cultured in the two different oxygen tensions. ∆Ct values were normalized to expression of the GAPDH housekeeping gene, and results are shown as mean ± SD (n = 6 samples/group from 3 independent experiments). ∗, p < .05, ∗∗∗, p < .001. Abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IHH, Indian hedgehog; TGFβ, transforming grown factor-β.
In vitro chondrogenesis at different oxygen tensions. Histological staining with Safranin-O and immunohistochemistry for type II collagen on constructs generated in vitro by naïve MSC cultured with (A) or without (B) TGFβ3 supplementation at 2% or 20% of oxygen tension. Scale bar = 50 µm. Expression levels of the mRNA for type II and X collagen, Gremlin-1, IHH TGFβ1 were quantified in pellets generated by naïve bone marrow-derived mesenchymal stromal/stem cells (C, D) cultured in the two different oxygen tensions. ∆Ct values were normalized to expression of the GAPDH housekeeping gene, and results are shown as mean ± SD (n = 6 samples/group from 3 independent experiments). ∗, p < .05, ∗∗∗, p < .001. Abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IHH, Indian hedgehog; TGFβ, transforming grown factor-β.

Cartilage formation from MSCs was induced by blocking VEGF-mediated angiogenesis.  These results represent a remarkable advance in cartilage formation that can be used for regenerative treatments.  This cartilage formation was spontaneous and efficient and if it can be carried out with VEGF-inhibiting drugs rather than genetic engineering techniques, then we might have a transferable technique for making cartilage in the laboratory to treat osteoarthritis and other joint-based maladies.  Clinical trials will be required, but this is certainly an auspicious start.

Cultured Skin-Based Stem Cells Regenerate Hair Follicles and Sebaceous Glands


It has been over ten years since the development of cultured skin substitutes or CSSs. CSSs consist of cultured epidermis from the patients and dermal fibroblasts that can form a good epidermal layer. However, CSSs do not form hair follicles or sebaceous glands which makes for mighty dry skin. Therefore, it is highly preferable to make at skin substitute that can form such epidermal appendages.

Fortunately the skin possesses several types of stem cells for use in regenerative medicine. Epidermal stem cells (Epi-SCs) in the basal layer of the epidermis that constantly provide new cells to the epidermis (the uppermost layer of the skin). Unfortunately, adult Epi-SCs cannot form hair follicles, but they can if they are combined with embryonic or newborn dermal cells. Dermal papilla (DP) cells can induce hair follicles, but the availability of DP cells has greatly limited work with them. Adult dermal skin also contains multipotent SKPs or skin-derived precursors. Injection of SKPs underneath the skin of mice, leads to the induction of new hair follicles (Biernaskie et al., 2009, Cell Stem Cell 5:610-623). This suggests that SKPs might be applicable in a clinical setting to induce hair follicles in cultured skin substitutes.

A new paper by Yaojiong Wu and coworker from the Shenzhen Key Laboratory of Health Sciences and Technology, in collaboration with Edward E. Tredget from University College Dublin has successfully induced the growth of hair follicles and sebaceous glands in a cultured skin substitute. They combined cultured Epi-SCs and SKPs, from mice and humans, and embedded them into a hydrogel. These stem cell-embedded hydrogels were then implanted into immunodeficient mice with substantial skin wounds.

The results were remarkable. The implants able to induce the formation of new epidermis with hair follicles. Furthermore, when Epi-SCs and SKPs taken from human scalps were used in these experiments, they worked just as well as those taken from mice.

Hair neogenesis with cultured epidermal stem cells (Epi-SCs) and skin-derived precursors (SKPs). (A): Putative epidermal stem cells residing in the basal layer of neonatal mouse epidermis expressed CD49f (red) in immunofluorescence stain, and mature keratinocytes in the top layers of the epidermis expressed cytokeratin (CK)6 (green). Nuclei were stained with 4′,6-diamidino-2-phenylindole. (B–E): Cultured Epi-SCs derived from neonatal mice (B) were positive for CD49f (C) and CK15 (D) in immunofluorescence stain; fluorescence-activated cell sorting analysis of the Epi-SCs indicated high levels of surface CD29 and CD49f (E). (F): The expression level of CD49f decreased progressively upon successive passages (P) in culture as determined by immunofluorescence analysis (in relation to the fluorescence intensity of P0 cells). Triple wells were used for each of the above experiments, and each experiment was repeated three times with similar results (∗, p < .05; ∗∗, p < .01; ∗∗∗, p < .001). (G): Hair genesis of cultured Epi-SCs in different passages. Cultured Epi-SCs derived from neonatal mice in different passages (P0 to P5) were implanted into excisional wounds in nude mice in combination with freshly isolated neonatal dermal cells (fresh D) in Matrigel; dermal cells alone or freshly isolated neonatal epidermal cells plus dermal cells (fresh E+D) were used as controls. Hair shafts generated 20 days posttransplant were counted (n = 6; ∗, p < .05; ∗∗∗, p < .001). (H–J): SKPs derived from neonatal mice in spheroid culture (H) expressed nestin, fibronectin (I), and BMP6 (J) in immunofluorescence analysis. (K): Hair genesis of SKPs in different passages. SKPs in P0 to P5 were implanted into excisional wounds in nude mice in combination with freshly isolated neonatal mouse epidermal cells (fresh E), and freshly isolated neonatal mouse epidermal cells alone or in combination with freshly isolated neonatal mouse dermal cells (fresh E+D) were used as controls. Twenty days posttransplant, hairs generated were counted (n = 6; ∗, p < .05; ∗∗, p < .01; ∗∗∗, p < .001). (L-N): Cultured Epi-SCs and SKPs in hair genesis. Combinations of cultured neonatal mouse Epi-SCs (P0 to P3) and SKPs (P0 to P3) were engrafted into excisional wounds in nude mice, and the number of hairs generated were counted 20 days posttransplant (n = 3, ∗, p < .05). (L). A representative image of hairs generated 20 days after a transplantation of P1 Epi-SCs and SKPs (M). Immunofluorescence analysis of the skin tissue with hair genesis showed densely populated hair follicles and sebaceous glands (N). Scale bars = 50 μm. Abbreviations: BM, basement membrane; BMP6, bone morphogenetic protein 6; CK, cytokeratin; DAPI, 4′,6-diamidino-2-phenylindole; Derm, dermis; Epi, epidermis; Epi-SC, epidermal stem cells; FITC, fluorescein isothiocyanate; fresh D, freshly isolated neonatal dermal cells; fresh D+E, freshly isolated neonatal epidermal cells plus dermal cells; HF, hair follicle; HS, hair shafts; P, passage; PE, phycoerythrin.
Hair neogenesis with cultured epidermal stem cells (Epi-SCs) and skin-derived precursors (SKPs). (A): Putative epidermal stem cells residing in the basal layer of neonatal mouse epidermis expressed CD49f (red) in immunofluorescence stain, and mature keratinocytes in the top layers of the epidermis expressed cytokeratin (CK)6 (green). Nuclei were stained with 4′,6-diamidino-2-phenylindole. (B–E): Cultured Epi-SCs derived from neonatal mice (B) were positive for CD49f (C) and CK15 (D) in immunofluorescence stain; fluorescence-activated cell sorting analysis of the Epi-SCs indicated high levels of surface CD29 and CD49f (E). (F): The expression level of CD49f decreased progressively upon successive passages (P) in culture as determined by immunofluorescence analysis (in relation to the fluorescence intensity of P0 cells). Triple wells were used for each of the above experiments, and each experiment was repeated three times with similar results (∗, p < .05; ∗∗, p < .01; ∗∗∗, p < .001). (G): Hair genesis of cultured Epi-SCs in different passages. Cultured Epi-SCs derived from neonatal mice in different passages (P0 to P5) were implanted into excisional wounds in nude mice in combination with freshly isolated neonatal dermal cells (fresh D) in Matrigel; dermal cells alone or freshly isolated neonatal epidermal cells plus dermal cells (fresh E+D) were used as controls. Hair shafts generated 20 days posttransplant were counted (n = 6; ∗, p < .05; ∗∗∗, p < .001). (H–J): SKPs derived from neonatal mice in spheroid culture (H) expressed nestin, fibronectin (I), and BMP6 (J) in immunofluorescence analysis. (K): Hair genesis of SKPs in different passages. SKPs in P0 to P5 were implanted into excisional wounds in nude mice in combination with freshly isolated neonatal mouse epidermal cells (fresh E), and freshly isolated neonatal mouse epidermal cells alone or in combination with freshly isolated neonatal mouse dermal cells (fresh E+D) were used as controls. Twenty days posttransplant, hairs generated were counted (n = 6; ∗, p < .05; ∗∗, p < .01; ∗∗∗, p < .001). (L-N): Cultured Epi-SCs and SKPs in hair genesis. Combinations of cultured neonatal mouse Epi-SCs (P0 to P3) and SKPs (P0 to P3) were engrafted into excisional wounds in nude mice, and the number of hairs generated were counted 20 days posttransplant (n = 3, ∗, p < .05). (L). A representative image of hairs generated 20 days after a transplantation of P1 Epi-SCs and SKPs (M). Immunofluorescence analysis of the skin tissue with hair genesis showed densely populated hair follicles and sebaceous glands (N). Scale bars = 50 μm. Abbreviations: BM, basement membrane; BMP6, bone morphogenetic protein 6; CK, cytokeratin; DAPI, 4′,6-diamidino-2-phenylindole; Derm, dermis; Epi, epidermis; Epi-SC, epidermal stem cells; FITC, fluorescein isothiocyanate; fresh D, freshly isolated neonatal dermal cells; fresh D+E, freshly isolated neonatal epidermal cells plus dermal cells; HF, hair follicle; HS, hair shafts; P, passage; PE, phycoerythrin.

Additionally, when the ability of Epi-SCs to differentiate into sebaceous glands was examined, Wu and others showed that Epi-SCs can form the precursors to sebaceous glands, sebocytes. Additionally, the oils secreted by these Epi-SC-derived sebocytes were chemically similar to sebaceous glands from native skin.

Thus, a combination of Epi-SCs and SKPs from human or mouse skin were sufficient to generate newly formed hair follicles and functional sebaceous glands. These results provide knowledge that is potentially transferable to clinical applications for regenerating damaged skin.

Fat-derived cells Enhance the Bone-Forming Capacity of Hypertrophic Cartilage Matrices


Treating particular bone defects or injuries present a substantial challenges for clinicians. The method of choice usually involves the use of an “autologous” bone graft (“autologous” simply means that the graft comes from the patient’s own bone). However, autologous bone grafts have plenty of limitations. For example, if a patient has a large enough bone defect, there is no way the orthopedist and take bone from a donor site without causing a good deal of risk to the donor site. Even with small bone grafts, so-called “donor site morbidity” remains a risk. Having said that, plenty of patients have had autologous bone grafts that have worked well, but larger bone injuries or defects are not treatable with autologous bone grafts.

The answer: bone substitute materials. Bone substitute materials include tricalcium phosphate, hydroxyapatite, cement, ceramics, bioglass, hydrogels, polylactides, PMMA or poly(methy methacrylate) and other acrylates,, and a cadre of commercially available granules, blocks, pastes, cements, and membranes. Some of these materials are experimental, but others do work, even if do not work every time. The main problem with bone substitute materials is that, well, they are not bone, and, therefore lack the intrinsic ability to induce the growth of new bone (so-called osteoinductive potential) and their ability to integrate into new bone is also a problem at times.

We must admit that a good deal of progress has been made in this area and it’s a good thing too. Many of our fabulous men and women-at-arms have returned home with severe injuries from explosives and wounds from large-caliber weapons that have shattered their bones. These courageous men and women have been the recipient of these technologies. However, the clinician is sometimes left asking herself, “can we do better?”

A new paper from the laboratories of Ivan Martin and Claude Jaquiery from the University Hospital of Basel suggests that we can. This paper appeared in Stem Cells Translational Medicine and describes the use of a hypertrophic cartilage matrix that was seeded with cells derived from the stromal vascular faction of fat to not only make bone in the laboratory, but to also heal skull defects in laboratory animals. While this work benefitted laboratory animals, it was performed with human cells and materials, which suggests that this technique, if it can be efficiently and cheaply scaled up, might be usable in human patients.
The two lead authors of this paper, Atanas Todorov and Matthias Kreutz and their colleagues made hypertrophic cartilage matrices from human bone marrow mesenchymal stem cells (from human donors) that were induced to make cartilage. Fortunately, protocols have been very well worked out and making cartilage plugs with chondrocytes that are enlarged (hypertrophic) is something that has been successfully done in many laboratories. After growing the mesenchymal stem cells in culture, half a million cells were induced to form cartilage with dexamethasone, ascorbic acid 2-phosphate, and the growth factor TGF-beta1. After three weeks, the cartilage plugs were subjected to hypertrophic medium, which causes the cartilage cells to enlarge.

Chondrocyte enlargement is a prolegomena to the formation of bone and during development, many of our long bones (femur, humerus, fibula, radius, etc.), initially form as cartilage exemplars that are replaced by bone as the chondrocytes enlarge. Ossification begins when a hollow cylinder forms in the center of the bone (known as the periosteal collar). The underlying chondrocytes degenerate and die, thus releasing the matrix upon which calcium phosphate crystals accrete. The primary ossification center commences with the calcification of the central shaft of the bone and erosion of the matrix by the invasion of a blood vessel. The blood vessels bring osteoprogenitor cells that differentiate into osteoblasts and begin to deposit the bone matrix.

Next, Todorov and his crew isolated the stromal vascular fraction from fat that was donated by 12 volunteers who had fat taken from them by means of liposuction. The fat is then minced, digested with enzymes, centrifuged, filtered and then counted. This remaining fraction is called the stromal vascular fraction or SVF, and it consists of a pastiche of blood vessel-forming cells, mesenchymal stem cells, and bone-forming cells (and probably a few other cells types too). These SVF cells were seeded onto the hypertrophic cartilage plugs and used for the experiments in this paper.

First, the SVF-seeded plugs were used to grow bone in laboratory rodents. The cartilage plugs were implanted into the backs for nude mice. Different cartilage plugs were used that had been seeded with gradually increasing number of SVF cells. The implanted plugs definitely made ectopic bone, but the amount of bone they made was directly proportional to the number of SVF cells with which they had been seeded. Staining experimental also showed that some of the newly-grown bone came from the implanted SVF cells.

Ectopic bone formation. Grafts based on devitalized hypertrophic cartilage pellets were embedded in fibrin gel without or with stromal vascular fraction cells from adipose tissue and implanted subcutaneously in nude mice. (A): Representative hematoxylin and eosin, Masson-Tri-Chrome, and Safranin-O (Saf-O) staining and in situ hybridization for human ALU sequences (dark blue = positive) after 12 weeks in vivo. Saf-O stainings are blue-green because of lack of glycosaminoglycans and counterstaining with fast green. Osteoid matrix and bone marrow are visible. Scale bars = 200 µm. (B): Stainings for metalloproteinase (MMP)13 and MMP9, as well as for the N-terminal neoepitope at the major MMP cleavage site (DIPEN) after 12 weeks in vivo (red/pink = positive). Scale bars = 50 µm. +, osteoid matrix; ⋆, bone marrow. Abbreviations: ALU, Arthrobacter luteus; H&E, hematoxylin and eosin; Masson, Masson’s trichrome; MMP, metalloproteinase; Saf-O, Safranin-O; SVF, stromal vascular fraction.
Ectopic bone formation. Grafts based on devitalized hypertrophic cartilage pellets were embedded in fibrin gel without or with stromal vascular fraction cells from adipose tissue and implanted subcutaneously in nude mice. (A): Representative hematoxylin and eosin, Masson-Tri-Chrome, and Safranin-O (Saf-O) staining and in situ hybridization for human ALU sequences (dark blue = positive) after 12 weeks in vivo. Saf-O stainings are blue-green because of lack of glycosaminoglycans and counterstaining with fast green. Osteoid matrix and bone marrow are visible. Scale bars = 200 µm. (B): Stainings for metalloproteinase (MMP)13 and MMP9, as well as for the N-terminal neoepitope at the major MMP cleavage site (DIPEN) after 12 weeks in vivo (red/pink = positive). Scale bars = 50 µm. +, osteoid matrix; ⋆, bone marrow. Abbreviations: ALU, Arthrobacter luteus; H&E, hematoxylin and eosin; Masson, Masson’s trichrome; MMP, metalloproteinase; Saf-O, Safranin-O; SVF, stromal vascular fraction.

In the second experiment, Todorov and Kreutz used these SVF-seeded cartilage plugs to repair skull lesions in rats. Once again, the quantity of bone produced was directly proportional to the number of SVFs seeded into the cartilage matrices prior to implantation. In both experiments, the density of SVF cells positively correlates with the bone-forming cells in the grafts and the percentage of SVF-derived blood vessel-forming cells correlates with the amount of deposited mineralized matrix.

Bone repair capacity. Devitalized hypertrophic cartilage pellets were embedded in fibrin gel without or with stromal vascular fraction (SVF) cells from adipose tissue and implanted in rat calvarial defects. (A): Mineralized volume quantified by microtomography (n = 9 grafts assessed per group). (B): Bone area assessed in histological sections, expressed as percentage of total defect area (n = at least 24 sections assessed per group). ∗∗∗∗, p < .0001. (C, D): Representative three-dimensional microtomography reconstructions (left) and hematoxylin/eosin (H&E) staining (right) of the calvarial defects filled with devitalized grafts, implanted without (C) or with (D) activation by SVF cells after 4 weeks. Dotted circles indicate the defect borders (4 mm diameter). Scale bars = 500 µm. (E): Microtomography (left) and H&E staining (middle and right) displaying the bridging between hypertrophic matrix and bone of the calvarium, or the fusion of single pellets (right) in activated grafts. White bar = 850 µm; black bars = 500 µm. Dotted lines indicate the edge of the calvarium. (F): In situ hybridization for Arthrobacter luteus sequences showing the presence of human cells (dark blue, positive) in the explants. Scale bar = 200 µm. Abbreviations: C, calvarium; dev, fibrin gel without stromal vascular fraction; dev + SVF, fibrin gel with stromal vascular fraction; P, hypertrophic matrix; SVF, stromal vascular fraction.
Bone repair capacity. Devitalized hypertrophic cartilage pellets were embedded in fibrin gel without or with stromal vascular fraction (SVF) cells from adipose tissue and implanted in rat calvarial defects. (A): Mineralized volume quantified by microtomography (n = 9 grafts assessed per group). (B): Bone area assessed in histological sections, expressed as percentage of total defect area (n = at least 24 sections assessed per group). ∗∗∗∗, p < .0001. (C, D): Representative three-dimensional microtomography reconstructions (left) and hematoxylin/eosin (H&E) staining (right) of the calvarial defects filled with devitalized grafts, implanted without (C) or with (D) activation by SVF cells after 4 weeks. Dotted circles indicate the defect borders (4 mm diameter). Scale bars = 500 µm. (E): Microtomography (left) and H&E staining (middle and right) displaying the bridging between hypertrophic matrix and bone of the calvarium, or the fusion of single pellets (right) in activated grafts. White bar = 850 µm; black bars = 500 µm. Dotted lines indicate the edge of the calvarium. (F): In situ hybridization for Arthrobacter luteus sequences showing the presence of human cells (dark blue, positive) in the explants. Scale bar = 200 µm. Abbreviations: C, calvarium; dev, fibrin gel without stromal vascular fraction; dev + SVF, fibrin gel with stromal vascular fraction; P, hypertrophic matrix; SVF, stromal vascular fraction.

This is not the first time scientists have proposed the use of cartilage plugs to induce the formation of new bone. Van der Stok and others and Bahney and colleagues were able to repair segmental bone defects in laboratory rodents. Is this technique transferable to human patients? Possibly. Hypertrophic cartilage is relatively easy to make and it is completely conceivable that hypertrophic cartilage wedges can be sold as “off-the-shelf” products for bone treatments. SVF can also be derived from the patient or can be derived from donors.

Furthermore, the protocols in this paper all used human cells and grew the products in immunodeficient rats and mice. Therefore, in addition to scaling this process up, we have a potentially useful protocol that might very well be adaptable to the clinic.

The efficacy of this technique must be confirmed in larger animal model system before human trials can be considered. Hopefully human trials are in the future for this fascinating technique.

Fat-Based Stem Cell Treatment Suggests a New Way to Slow Scarring in Scleroderma Patients


Scleroderma is an autoimmune disease that causes chronic scarring of the skin and internal organs. The deposition of massive quantities of collagen decrease the pliability and elasticity of the skin, lungs, and blood vessels. As you might guess, the prognosis of scleroderma patients is quite poor and this disease causes a good deal of suffering and morbidity.

Treatments options usually include steroids, and other drugs that suppress the immune system, all of which have severe side effects.

New research from scientists at the Hospital for Special Surgery in New York City and other collaborating institutions, led by Dr. Teresa T. Lu, may have identified a new mechanism in operation during the onset and maintenance of scleroderma. This work was published in the Journal of Clinical Investigation.

In this study, scleroderma patients were shown to possess diminished numbers of “adipose-derived stromal cells” (ADSCs) in the layer of fat that underlies the upper layers of the skin. These fatty tissues are referred to as “dermal white adipose tissue.” The loss of these dermal white adipose tissue ADSCs tightly correlates with the onset of scarring in two different mouse model systems that recapitulate scleroderma in laboratory mice. These observations may show that ADSC loss contributes to scarring of the skin.

Why do these ADSCs die? Lu and her coworkers discovered that ADSC survival depends on the presence of particular molecules secreted by immune cells called “dendritic cells.” Skin-based dendritic cells secrete a molecule called lymphotoxin B. Although this molecule is called a toxin, it is required for ADSC survival. In laboratory mice that suffered from a scleroderma-like disease, artificial stimulation of the lymphotoxin B receptor in ADSCs amplified and eventually restored the numbers of ADSCs in the skin. Could stimulating ADSCs in this manner help treat scleroderma patients?

According the Dr. Lu, the administrating author of this publication, injecting “ADSCs is being tried in scleroderma; the possibility of stimulating the lymphotoxin B pathway to increase the survival of these stem cells is very exciting.” Dr. Lu continued, “By uncovering these mechanisms and targeting them with treatments, perhaps one day we can better treat the disease.”

Lu also thinks that a similar strategy that targets stem cells from other tissues might provide a treatment for other rheumatological conditions – such as systemic lupus erythematosis and rheumatoid arthritis. Additionally, bone and cartilage repair might also benefit from such a treatment strategy.

In the coming years, Dr. Lu and her colleagues hope to test the applicability of this work in human cells. If such a strategy works in human cells, then the next stop would be trial in human scleroderma patients. The success of such a treatment strategy would be a welcome addition to the treatment options for scleroderma patients, but only if this treatment is shown to be proven safe and effective.

“Improving ADSC therapy would be a major benefit to the field of rheumatology and to patients suffering from scleroderma,” said Lu.

USC Researchers Isolate Human Nephon Progenitor Cells – Future Possibilities for Kidney Regeneration


Researchers at the Saban Research Institute of Children’s Hospital of Los Angeles and the University of Southern California (USC) have reported the isolation of human nephron progenitor (NP) cells. These results, which were published in the journal Stem Cell Translational Medicine, might very well elucidate how progenitor cells differentiate into become renal cells and then develop into kidneys. Such insights could, possibly provide new strategies to promote renal regeneration after chronic kidney failure or acute kidney injury.

Kidneys are composed of about a million tiny filtration units known as “nephrons.” These diminutive structures filter waste and concentrate those wastes into urine, which is leaked into the bladder. In humans, approximately 500,000 to 1,000,000 nephrons are generated before week 34 – 36 of fetal gestation. However, at this point in development, the NP cells are exhausted and kidney development (known as “nephrogenesis”) effectively ceases. If the kidney loses a large enough quantity of nephrons after this time period, such losses may lead to irreversible kidney failure, since no further cell repair or regeneration is possible.

kidney_nephron_civyrose

In past studies, NPs were made from induced pluripotent stem cells, or by utilizing animal models. Scientists at USC and Children’s Hospital of Los Angeles (CHLA), chose a different tactic; they designed an efficient protocol by which they could directly isolate human NPs. To accomplish this, Dr. Laura Perin and her colleagues used RNA-labeling probes to obtain cells that expressed the SIX2 and CITED1 genes. Cells expressing both of these genes are almost certainly NPs, since SIX2 and CITED1 are master regulatory genes that promote renal development.

Dr. Perin, co-director of CHLA’s GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, added, “In addition to defining the genetic profile of human NP, this system will facilitate studies of human kidney development, providing a novel tool for renal regeneration and bioengineering purposes.”

On a rather sanguine note, Perin noted that these experiments, which constitute proof-of-concept work, may create new applications to researchers who might be able to use her laboratory’s techniques to isolated progenitor cells for other organs, the pancreas, heart, or lung. “This technique provides a ‘how to’ of human tissue during development,” said Perin.

“It is an important tool that will allow scientists to study cell renewal and differentiation in human cells, perhaps offering clues to how to regulate such development,” added first author of this paper, Stefano Da Sacco.

Functional, Though Not Completely Structurally Normal Tissue-Engineered Livers Made from Adult Liver Cells


Tracy C. Grikscheit and her research team from the Saban Research Institute at the Children’s Hospital Los Angeles have produced functional, tissue-engineered human and mouse liver from adult stem and progenitor cells.

The largest organ in our bodies, the liver executes many vital functions. It is located in the upper right portion of the abdomen protected by the rib cage. The liver has two main lobes that are divided into many tiny lobules.

Liver cells are supplied by two different sources of blood. The hepatic artery provides oxygen-rich blood from the heart and the portal vein supplies nutrients from the intestine and the spleen. Normally, veins return blood from the body to the heart, but the portal vein allows chemicals from the digestive tract to enter the liver for “detoxification” and filtering prior to entering the general circulation. The portal vein also delivers the precursors liver cells need to produce the proteins, cholesterol, and glycogen required for normal body activities.

The liver also makes bile. Bile is a mixture of water, bile acids (made from stored cholesterol in the liver), and other sundry chemicals. Bile made by the liver is then stored in the gallbladder. When food enters the duodenum (the uppermost part of the small intestine), the gallbladder contracts and secretes bile is secreted into the duodenum, to aid in the digestion of fats in food.

The liver also stores extra sugar in the form of glycogen, which is converted back into glucose when the body needs it for energy. It also produces blood clotting factors, processes and stores iron for red blood cell production, converts toxic nitrogenous wastes (usually in the form of ammonium) into urea, which is excreted in urine. Finally, the liver also metabolizes foreign substances, like drugs into substances that can effectively excreted by the kidneys.

Both adults and children are affected by various types of liver disease. Liver can be caused by infectious hepatitis, which is caused by a variety of viruses, chronic alcoholism, inherited liver abnormalities (e.g., Wilson’s disease, hemochromatosis, Gilbert’s disease) or various types of liver cancer. One in ten people in the United States suffer from liver cancer and need a liver transplant. Liver transplantation is the only effective treatment for end-stage liver disease, but the scarcity of liver donors and the necessity of life-long immunosuppressive therapy limit treatment options. In some cases (such as inborn errors of metabolism or acute bouts of liver insufficiency), patients may be effectively treated by transplanting small quantities of functional liver tissue.

Alternate approaches that have been investigated, but these protocols have significant limitations. For example, “hepatocyte transplantation” involves the infusion of liver cells from a donated liver. This protocol, however, wastes many cells that do not integrate into the existing liver and such a treatment is usually little more than a stop-gap solution, since most patients require a liver transplant within a year of this treatment.

Human-induced pluripotent stem (iPS) cells are another possibility but, so far, iPS cells differentiate into immature rather than mature, functional, proliferative hepatocytes.

A need remains for a robust treatment that can eliminate the need for immunosuppressive theory. “We hypothesized that by modifying the protocol used to generate intestine, we would be able to develop liver organoid units that could generate functional tissue-engineered liver when transplanted,” said Dr. Grikscheit.

Grikscheit and her co-workers extracted hardy, multicellular clusters of liver cells known as liver organoid units (LOUs) from resected human and mouse livers. These LOUs were loaded onto scaffolds made from nonwoven polyglycolic acid fibers. These scaffolds are completely biodegradable and they provide a structure upon which the LOUs can grow, fuse, and form a structure that resembles a liver.

After transplantation of the LOU/scaffold combinations, they generated tissue-engineered livers or TELis. Tissue-engineered livers developed from the human and mouse LOUs and possessed a variety of key liver-specific cell types that are required for normal hepatic function. However, the cellular organization of these TELis did differ from native liver tissue.

The tissue-engineered livers (TELis) made by Grikscheit’s laboratory contained normal liver components such as hepatocytes that properly expressed the liver-specific protein albumin, CK19-expressing bile ducts, vascular structures surrounded by smooth muscles that expressed smooth muscle-specific actin, desmin-expressing stellate cells, and CD31-expressing endothelial cells. The production of albumin by the TELi hepatocytes indicated that these cells were executing their normal secretory function. In a mouse model of liver failure, their tissue-engineered liver provided some hepatic function. In addition, the hepatocytes proliferated in the tissue-engineered liver.

A cellular therapy for liver disease that utilizes technologies like this would completely change the treatment options for many patients. In particular, children with metabolic disorders and require a new liver to survive might see particular benefits if such a treatment can come to the clinic. By generating functional hepatocytes comparable to those in native liver, establishing that these cells are functional and proliferative, Grikscheit and her colleagues have moved one step closer to that goal.

To access this paper, please see: Nirmala Mavila et al., “Functional Human and Murine Tissue-Engineered Liver Is Generated From Adult Stem/Progenitor Cells,” Stem Cells Translational Medicine, August 2016 DOI: 10.5966/sctm.2016-0205.

AUF1 Gene Important Inducer of Muscle Repair


A new study in the laboratory of Robert J. Schneider at NYU Langone and his collaborators has uncovered a gene that plays integral roles in the repair of injured muscle throughout life. This investigation shows that this previously “overlooked” gene might play a pivotal role in “sarcopenia,” which refers to the loss of muscle tissues with age.

This collaboration between scientists at NYU Langone Medical Center and the University of Colorado at Boulder showed that the levels of a protein called AUF1 determine if stem cell populations retain the ability to regenerate muscle after injury and as mice age.

Changes in the activity of AUF1 have also been linked by past studies to human muscle diseases. More than 30 genetic diseases, known collectively as myopathies, show defective muscle regeneration and these anomalies cause muscles to weaken or waste away.

For example, muscular dystrophy is a disease in which abnormal muscles fail to function properly and undergo normal repair. Although the signs and symptoms of Duchenne Muscular Dystrophy vary, in some cases wildly, this disease develops in infants and affects and weakens the torso and limb muscles beginning in young adulthood. Sarcopenia, in healthy individuals occurs in older patients.

Skeletal muscles have a stem cell population set aside for muscle repair known as satellite cells. These cells divide and differentiate into skeletal muscle when skeletal muscle is damaged, and as we age, the capacity of muscle satellite cells to repair muscle decreases.

AUF1 is a protein that regulates muscle stem cell function by inducing the degradation of specific, targeted messenger RNAs (mRNAs). According to Robert Schneider, “This work places the origin of certain muscle diseases squarely within muscle stem cells, and shows that AUF1 is a vital controller of adult muscle stem cell fate.” He continued: “The stem cell supply is remarkably depleted when the AUF1 signal is defective, leaving muscles to deteriorate a little more each time repair fails after injury.”

The experiments in this study demonstrated that mice that lack AUF1 display accelerated skeletal muscle wasting as they age. These AUF1-depleted mice also showed impaired skeletal muscle repair following injury. When the molecular characteristics of these AUF1-depleted muscle satellite cells were examined, Schneider and his collaborators showed that auf1−/− satellite cells had increased stability and overexpression of so-called “ARE-mRNAs.” ARE mRNAs contain AU-rich elements at their tail-ends. AUF1 proteins bind to these ARE mRNAs and induce their degradation. In the absence of AUF1, muscle satellite cells accumulate ARE mRNAs. One of these ARE mRNAs includes that which encodes matrix metalloprotease, MMP9. Overexpression of MMP9 by aging muscle satellite cells causes degradation of the skeletal muscle matrix, which prevents satellite-cell-mediated regeneration of muscles. Consequently, the muscle satellite cells return to their quiescent state and fail to divide and repair skeletal muscle.

When Schneider and his coworkers and collaborators blocked MMP9 activity in auf1−/− mice, they found that they had restored skeletal muscle repair and maintenance of the satellite cell population.

These experiments suggest that repurposing drugs originally developed for cancer treatment that blocks MMP9 activity might be a way to dial down age-related sarcopenia.

“This provides a potential path to clinical treatments that accelerate muscle regeneration following traumatic injury, or in patients with certain types of adult onset muscular dystrophy,” said Schneider.

This work was published here: Devon M. Chenette et al., “Targeted mRNA Decay by RNA Binding Protein AUF1 Regulates Adult Muscle Stem Cell Fate, Promoting Skeletal Muscle Integrity,” Cell Reports, 2016; DOI: 10.1016/j.celrep.2016.06.095.

Behavior Of Brain Stem Cells Controlled By Cerebrospinal Fluid Signals


The choroid plexus is a network of blood vessels in each ventricle of the brain. It is derived from the pia mater and produces the cerebrospinal fluid.  The choroid plexus, unfortunately, has been ignored to some degree when it comes to brain research.  However, CSF turns to be an important regulator of adult neural stem cells, research indicates.

A new study led by Prof. Fiona Doetsch at the Biozentrum of the University of Basel, Switzerland has shown that signals secreted by the choroid plexus dynamically change during aging, and these different signals affect the behavior of aged stem cells.

In the adult brain, neural stem cell populations in various places throughout the central nervous system divide to give rise to neurons and glial cells throughout our lives. These stem cells reside in unique micro-environments (known as niches) that provide key signals that regulate stem cell self-renewal and differentiation. Stem cells in the adult brain contact the ventricles, which are cavities in the brain filled with CSF. CSF bathes and protects the brain and is produced by the cells of the choroid plexus.

Ventricular System of the Brain

Doetsch and her coworkers have shown that the choroid plexus is a key component of the stem cell niche, and that the properties of this stem cell niche change throughout life and affect stem cell behavior.

Doetsch’s group discovered that the choroid plexus secretes a cocktail of important signaling factors into the CSF. These CSF-secreted growth factors are important in stem cell regulation throughout life. As we age, the levels of stem cell division and formation of new neurons decrease. They also showed that although stem cells are still present in the aged brain, and have the capacity to divide, their ability to do so have significantly decreased.

Graphical abstract

“One reason is that signals in the old choroid plexus are different. As a consequence, stem cells receive different messages and are less capable to form new neurons during aging. In other words, compromising the fitness of stem cells in this brain region,” said Violeta Silva Vargas, first author of the paper that appeared in the journal Cell Stem Cell. “But what is really amazing is that when you cultivate old stem cells with signals from young fluid, they can still be stimulated to divide, behaving like the young stem cells.”

In the future, Doetsch and her group plans to tease out the composition of the signaling factors secreted by the choroid plexus.  They would also like to know how the composition of this growth factor cocktail changes as a result of changes in brain states and how these changes affect neural stem cells. This could provide new ways to understand brain function in health and disease.

“We can imagine the choroid plexus as a watering can that provides signals to the stem cells. Our investigations also open a new route for understanding how different physiological states of the body influence stem cells in the brain during health and disease, and opens new ways for thinking about therapy,” said Doetsch.

This work was published here: Violeta Silva-Vargas et al., “Age-Dependent Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells,” Cell Stem Cell, 2016; DOI: 10.1016/j.stem.2016.06.013.

Computer Simulations of MSC-Heart Muscle Interactions Identify A Family of MSCs that Produce Few Side Effects


A research team at the Icahn School of Medicine at Mount Sinai has utilized a mathematical modeling to simulate the delivery of human mesenchymal stem cells to a damaged heart. In doing so, they found that a particular subset of harvested MSCs minimizes the risks associated with this therapy. This study represents a development that could lead to novel strategies to repair and regenerate heart muscle and might even improve stem cell treatments for heart attack patients.

In the United States alone, one person suffers a myocardial infarction or heart attack every 43 seconds (on the average). The urgency of this situation has motivated stem cells scientists and cardiologists to develop novel therapies to repair and regenerate heart muscle. One of these therapies includes the implantation of human mesenchymal stem cells (hMSCs). However, in clinical trials the benefits of hMSC implantation have often been modest and even transient. This might reflect our understanding of the mechanism by which hMSCs influence cardiac function.

Kevin D. Costa and his colleagues at the Icahn School of Medicine have used mathematical modeling to simulate the electrical interactions between implanted hMSCs and endogenous heart cells. They hoped to eventually understand the possible adverse effects of hMSC transplantation and new methods for reducing some potential risks of this therapy.

Implanted hMSCs can disrupt the electrical connections between heart muscle cells and can even cause the heart to beat irregularly; a condition called “arrhythmias.” One particular type of hMSCs, however, did not express an ion channel called EAG1 (which stands for “ether-a-go-go”). The EAG1-less hMSCs did not cause arrhythmias at nearly the rate as the EAG1-containing hMSC, in computer simulations run by Costa’s group.

These EAG1-less hMSCs, also known as “Type C” MSCs, minimized electrochemical disturbances in cardiac single-cell and tissue-level electrical activity. The benefits of these EAG1-less hMSCs may enhance the safety of hMSC treatments in heart attack patients who receive stem cell therapy. This advance could therefore lead to new clinical trials and future improvements in treatment of patients with heart failure.

Costa’s study might provide a template for future computational studies on mesenchymal stem cells. It also provides novel insights into hMSC-heart cell interactions that can guide future experimental studies to understand the mechanisms that underlie hMSC therapy for the heart.

This work was published in Joshua Mayourian et al., “Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes, PLOS Computational Biology, 2016; 12 (7): e1005014. DOI: 10.1371/journal.pcbi.1005014.

Adjustable Gels Used to Determine Those Molecules That Drive Stem Cell Differentiation


Scientists have been very interested in the details of stem cell differentiation. To that end, several laboratories have designed hydrogels that mimic the stiffness of biological tissue in order to grow stem cells and study their differentiation.

In one enterprising laboratory, led by Rein Ulijn of the City University of New York and the University of Strathclyde, scientists have used a novel culture-based gel system to study mesenchymal stem cell differentiation and identify those metabolites used by stem cells when they select bone and cartilage cell fates. When these molecules are provided to standard stem cell cultures, these molecules can guide stem cells to generate desired cell types. This new study illustrates how new biomaterials can provide an exacting model system that can help scientists precisely determine those identifying factors that drive stem cell differentiation.

Stem-cell scientists have known that the rigidity of a hydrogel surface can instruct stem cells to differentiate. A rigid surface, as it turns out, can result in bone cell formation, whereas soft surfaces induce the differentiation of cells into neuron-like cells. With this information, Ulijn and others developed a protocol that generates gels by combining small building-block molecules that spontaneously form a network of nanosized fibers. Furthermore, by varying the concentration of these building blocks, the stiffness of these gels can be adjusted. By mimicking the stiffness of bone (40 kilopascal) or cartilage (15 kilopascal), the gel stimulates stem cells applied to its surface to differentiate accordingly.

“This paper is a great example of how chemistry can help make step changes in biology,” said Matthew Dalby of the University of Glasgow and co-senior author. “As a biologist, I needed simple yet tunable cell-culture gels that would give me a defined system to study metabolites in the laboratory. Rein had developed the chemistry to allow this to happen.”

The available gels for growing stem cells are typically derived from animal products. Unfortunately, this can affect the reproducibility of results, since different preparations of particular animal products can have rather different properties. Synthetic components usually require coatings or coupling of cell-adhesive ligands. However, the gel developed by Ulijn’s group is composed of two simple synthetic peptide derivatives. One component binds to copies of itself with high directional preference, which results in the spontaneous formation of nanoscale fibers when the molecules are dissolved in water. The second components consists of a surfactant-like molecule that binds to the fiber surface and presents simple, cell-compatible chemical groups to any cells.

Print

The components are held together by relatively weak and reversible interactions, e.g., hydrogen bonding and aromatic stacking. Interestingly, variants of these gels are commercially available through a spinoff company called Biogelx, Ltd., where Ulijn serves as chief scientific officer.

“We wanted a platform that provides nanofiber morphology and as-simple-as-possible chemistry and tunable stiffness to serve as a blank-slate background so that we could focus on changes in stem cell metabolism,” said Ulijn. “Matt and his team performed metabolomics analysis to find out how the key metabolites within a stem cell are used up during the differentiation process.”

Particular transcription factors are often the ingredients scientists use to induce stem cell fate in the case of induced pluripotent stem cells. However, Dalby and Ulijn think that certain metabolites might drive those pathways that cause the different intracellular concentrations of transcription factors that drive the various differentiation pathways.

One metabolite featured in the study is cholesterol sulfate. Cholesterol sulfate is used up during osteogenesis on a rigid matrix and can also be used to convert stem cells into bone-like cells in cell culture.

In their paper, Ulijn and his coworkers showed how small molecules, like cholesterol sulfate, can put into motion those cell-signaling pathways that culminate in the activation of the transcription factors that drive the transcription of major bone-related genes. The expression of these bone-specific genes drives bone formation, and this demonstrates a connection between the metabolites and the activation of transcription factors.

It must be noted that this gel does not precisely recapitulate the microenvironment inside the body. Therefore, it is unclear if the stem cells grown on it behave differently on the designed gel surfaces than they would in the body.

Although the full list of metabolites derived from the analysis is preliminary, “it could certainly point researchers in the right direction,” Ulijn said. “Our ambition is to simplify drug discovery by using the cell’s own metabolites as drug candidates,” Dalby said.

This paper was published here: Alakpa et al., “Tunable Supramolecular Hydrogels for Selection of Lineage Guiding Metabolites in Stem Cell Cultures,” Chem, 2016 DOI:10.1016/j.chempr.2016.07.001.

Two Proteins Safeguard Skin Stem Cell Function


Ever scraped your knees or elbows? It’s a good thing that they didn’t stay that way, since human skin readily renews, heals wounds, and regenerates the hair that covers it thanks to a resident population of stem cells. These cells continually produce new ones. Depending on someone’s age, the complete skin is renewed every 10-30 days.

A new study led by Salvador Aznar Benitah (Institute for Research in Biomedicine, Barcelona, Spain) has identified two proteins that are integral to the conservation of skin stem cells. Without these proteins these skin-based skin cells are lost.

The proteins identified, Dnmt3a and Dnmt3b, trigger the first step of the genetic program that leads to stem cell renewal and regeneration of the skin. “Without them (i.e. Dnmt3a & Dnmt3b), this program is not activated and the stem cells collapse and disappear from the tissue,” said Benitah.

Dnmt3a & 3b are enzymes that attach methyl groups (-CH3) to the cytosines in DNA molecules.  The full name of these enzymes, DNA (cytosine-5)-methyltransferase 3A, catalyze the transfer of methyl groups to specific CpG structures in DNA.  This process is known as “DNA methylation.”  These particular DNA methyltransferases participate in de novo DNA methylation.  They must be distinguished from so-called “maintenance DNA methylation,” which ensures the fidelity of replication of inherited epigenetic patterns.

Epigenetics refers to cellular and physiological trait variations that result from external or environmental factors that switch genes on and off and affect how cells express genes, but do not involve changes in nucleotide sequences, but in chemical modifications to DNA or higher-order structures of DNA.

DNMT3A forms part of the family of DNA methyltransferase enzymes that includes DNMT1, DNMT3A and DNMT3B.  While de novo DNA methylation modifies the information passed on by parents to their progeny, it enables key epigenetic modifications essential for processes such as cellular differentiation and embryonic development, transcriptional regulation, heterochromatin formation, X-inactivation, imprinting and genome stability.

Lorenzo Rinaldi, a graduate student in Benitah’s laboratory who was also the first author of this study, has mapped the regions of the genome that houses the genes that encodes these two proteins. Rinaldi and others have shown that Dnmt3a & 3b affect gene expression by methylating “gene enhancers” and “superenhancers.” Gene enhancers and superenhancers are sequences that tend to be far away from genes but still have the ability to increase the speed of gene expression up to 200-fold.

“It was surprising to see that two proteins that have always been associated with gene repression through DNA methylation are activated in the most transcriptionally active regions of stem cells. We had never observed this activity because we were unable to study the global distribution of Dnmt3a and Dnmt3b at the genomic level. Thanks to advances in sequencing techniques, more researchers are observing the very mechanism that we have described,” said Rinaldi.

Of the 12,000 gene enhancers in the genome, about 300 are superenhancers related to stem cell activity. Dnmt3a & 3b activate expression of the approximately 1,000 genes that are required for the self-renewing capacity of stem cells. By methylating the superenhancer, these proteins trigger the first step of the machinery that leads to the amplified expression of these essential genes for the stem cell.  Dnmt3a and Dnmt3b clearly associate with the most active enhancers in human epidermal SCs.

Graphical_Done

The expression of Dnmt3a & 3b is also altered in cancer cells. Cancer cells tend to show altered DNA methylation and altered gene enhancers that affect gene expression. The mass sequencing of tumor cell genomes has provided these observations. Dnmt3a and Dnmt3b activities are altered in many types of tumor, including leukemias, and cancers of the lung and the colon.

“Each of these three components is associated with the development of various kinds of cancer. Given that these proteins activate gene expression enhancers through DNA methylation, we believe that it would be of interest to study them in cancer cells in order to determine whether they participate in tumor development,” said Benitah.

This work appeared in: Lorenzo Rinaldi et al., “Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis,” Cell Stem Cell, July 2016 DOI: 0.1016/j.stem.2016.06.020.

Mouse Study Suggests Stem Cells Can Ward Off Glaucoma


Regulating the internal pressure of the eyeball (known as the “intraocular pressure” or IOP) is crucial for the health of the eye.  Failure to maintain a healthy IOP can lead to vision loss in glaucoma.  However, a new set of experiments by Dr. Markus Kuehn and his colleagues at the Iowa City Veterans Affairs Medical Center and the University of Iowa has shown that infusions of stem cells could help restore proper drainage for plugged-up eyes that are at risk for glaucoma.

Kuehn and his coworkers injected stem cells into the eyes of laboratory mice suffering with glaucoma.  These infused cells regenerated the tiny, fragile patch of tissue known as the trabecular meshwork, which functions as a drain for the eyes.  When fluid accumulates in the eye, the increase in IOP can lead to glaucoma.  Glaucoma damages the optic nerve leads to blindness.

“We believe that replacement of damaged or lost trabecular meshwork cells with healthy cells can lead to functional restoration following transplantation into glaucoma eyes,” Kuehn wrote on his lab’s website.  One potential advantage of the approach is that induced pluripotent stem cells (iPSCs) could be created from cells harvested from a patient’s own skin. That gets around the ethical problems with using fetal stem cells.  It also lessens the chance of the patient’s body rejecting the transplanted cells.

In order to differentiate iPSCs into trabecular meshwork (TM) cells, Kuehn’s team cultured the iPSCs in medium that had previously been “conditioned” by actual human trabecular meshwork cells.  Injection of these TM cells into the eyes of laboratory rodents led to a proliferation of new endogenous cells within the trabecular meshwork.  The injected stem cells not only survived in the eyes of the animals, but also induced the eye into producing more of its own TM cells, thus multiplying the therapeutic effect.

Glaucoma has robbed some 120,000 Americans of their sight, according to data provided by the Glaucoma Research Foundation.  African-Americans are at especially high risk, as are people over age 60, those with diabetes, and those with a family history of the disease.  Glaucoma can be treated with medicines, but is not curable.  Management of the disease can delay or even prevent the eventual loss of vision. Among the treatments used are eye drops and laser or traditional surgery.

Kuehn and his team think that their findings show some promise for the most common form of glaucoma, known as primary open angle glaucoma.  It remains unclear if this mouse model is as relevant for other forms of the disease.  Another possible limitation of this research is that the new trabecular meshwork cells generated from the stem cell infusion eventually succumb to the same disease process that caused the breakdown in the first place.  This would require re-treatment and it is unclear whether an approach requiring multiple treatments over time would be viable. Kuehn and others to continue investigate this potentially fruitful approach.

This paper was published in the journal Proceedings of the National Academy of Sciences:  Wei Zhu et al., “Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo,” Proceedings of the National Academy of Sciences, 2016; 113 (25): E3492 DOI: 10.1073/pnas.1604153113.

Weissman Laboratory Define Roadmap for Pluripotent Human Stem Cell Differentiation into Mesodermal Fates: Cells Rapidly Generate Bone, Heart Muscle


How do we get stem cells to differentiate into the cell types we want? Implanting undifferentiated stem cells into a living organism can sometimes result in cells that differentiate into unwanted cell types. Such a phenomenon is called heterotropic differentiation and it is a genuine concern of regenerative medicine. What is a clinical researcher to do? Answer: make a road map of the events that drive cells to differentiate into specific cell types and their respective precursors.

Researchers in the laboratory of Irving Weissman at Stanford University Researchers at the Stanford University School of Medicine have mapped out the bifurcating lineage choices that lead from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. The experiments also defined the sets of biological and chemical signals necessary to quickly and efficiently direct pluripotent stem cells to differentiate into pure populations of any of 12 cell types. This is certainly a remarkable paper in many aspects, since Weissman and his group defined the extrinsic signals that control each binary lineage decision that occur during stem cell differentiation. This knowledge enables any lab to successfully block differentiation toward unwanted cell fates and rapidly steer pluripotent stem cells toward largely pure human mesodermal lineages at most of these differentiation branchpoints.

The ability to make pure populations of these cells within days rather than the weeks or months is one of the Holy Grails of regenerative medicine. Such abilities can, potentially, allow researchers and clinicians to make new beating heart cells to repair damage after a heart attack, or cartilage for osteoarthritic knees or hips, or bone to reinvigorate broken bones or malfunctioning joints, or heal from accidental or surgical trauma.

The Weissman study also highlights those key, but short-lived, patterns of gene expression that occur during human early embryonic segmentation. By mapping stepwise chromatin and single-cell gene expression changes during the somite segmentation stage of mesodermal development, the Weissman group discovered a previously unobservable human embryonic event transiently marked by expression of the HOPX gene. It turns out that these decisions made during human development rely on processes that are evolutionarily conserved among many animals. These insights may also lead to a better understanding of how congenital defects occur.

“Regenerative medicine relies on the ability to turn pluripotent human stem cells into specialized tissue stem cells that can engraft and function in patients,” said Irving Weissman of Stanford. “It took us years to be able to isolate blood-forming and brain-forming stem cells. Here we used our knowledge of the developmental biology of many other animal models to provide the positive and negative signaling factors to guide the developmental choices of these tissue and organ stem cells. Within five to nine days we can generate virtually all the pure cell populations that we need.”

All in all, this roadmap enables scientists to navigate mesodermal development to produce transplantable, human tissue progenitors, and uncover developmental processes.

This paper was published in the journal Cell: Irving L. Weissman et al., “Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types,” Cell, July 2016 DOI: 10.1016/j.cell.2016.06.011.

Patient-Specific Neurons Reveal Vital Clues About Autism


The brains of some people with autism spectrum disorder grow faster than usual early on in life, often before diagnosis. Now new research from scientists at the Salk Institute has used cutting-edge stem cell-based techniques to elucidate those mechanisms that drive excess brain growth, which affects as many as 30 percent of people with autism.

These findings show that it is possible to use stem cell reprogramming technologies to model the earliest stages of complex disorders and to evaluate potential therapeutic drugs. The Salk team, led by Alysson Muotri, discovered that stem cell-derived neurons, derived from stem cells that had been made from cells taken from autism patients, made fewer connections in culture compared to cells from healthy individuals. These same scientists also restored cell-cell communication between these cells by adding a growth factor called IGF-1 (insulin-like growth factor-1). IGF-1 is in the process of being evaluated in clinical trials of autism.

“This technology allows us to generate views of neuron development that have historically been intractable,” said senior investigator Fred H. Gage. “We’re excited by the possibility of using stem cell methods to unravel the biology of autism and to possibly screen for new drug treatments for this debilitating disorder.”

In the United States alone, autism affects approximately one out of every 68 children. Autistic children have problems communicating, show an inhibited ability to interact with others, and usually engage in repetitive behaviors. Mind you, the symptomatic manifestations in autistic children can vary dramatically in type and severity. Autism, to date, has no known, identified cause.

In 2010, Gage and collaborators recreated features of Rett syndrome (a rare disorder that shares features of autism but is caused by mutations in a single gene; MECP2) in a cell culture system. They extracted skin cells from Rett Syndrome patients and converted those cells into induced pluripotent stem cells (iPSCs). Then Gage and others differentiated those Rett-Syndrome-specific iPSCs into neurons, which they grew in culture. These neurons were then studied in detail in a neuron-specific culture system. “In that study, induced pluripotent stem cells gave us a window into the birth of a neuron that we would not otherwise have,” said Marchetto, the study’s first author. “Seeing features of Rett syndrome in a dish gave us the confidence to next study classical autism.”

In this new study, Gage and others created iPSCs from autism patients whose brains had grown up to 23 percent faster than usual during toddlerhood but had subsequently normalized. These iPSCs were then differentiated into neuron precursor cells (NPCs). Examinations of these NPCs revealed that the NPCs made from iPSCs derived from autism patients proliferated faster than those derived from typically developing individuals. This finding supports a theory advanced by some experts that brain enlargement is caused by disruptions to the cell’s normal cycle of division, according to Marchetto.

In addition, the neurons derived from autism-specific iPSCs behaved abnormally in culture. They fired less often compared with those cells derived from healthy people. The activity of these neurons, however, improved if they were treated with IGF-1. IGF-1 enhances the formation of cell-cell connections between neurons, and the establishment and stabilization of these connections seem to normalize neuronal function.

Muotri and Gage and others plan to use these patient-derived cells to elucidate the molecular mechanisms behind IGF-1’s effects. They will examine changes in gene expression and attempt to correlate them with changes in neuronal function. Although the newly derived cells are far from the patients’ brains, a brain cell by itself may, hopefully, reveal important clues about a person and their brain.

This work was published in the journal Molecular Psychiatry: M. C. Marchetto et al., “Altered proliferation and networks in neural cells derived from idiopathic autistic individuals,” Molecular Psychiatry, 2016; DOI: 10.1038/mp.2016.95.

Breakthrough in scaling up life-changing stem cell production


Research teams at the University of Nottingham, Uppsala University and GE Healthcare in Sweden have discovered a new method that could solve the big problem of the large-scale stem cell production required to fully realize the potential of these remarkable cells for understanding and treating disease.

Human pluripotent stem cells are undifferentiated and possess the unique potential to differentiate into all the different cell types of the body. With applications in disease modeling, drug screening, regenerative medicine and tissue engineering, there is an enormous demand for these cells, which will only grow as clinical applications and the pharmaceutical industry increase the use of these cells.

However, large-scale production of stem cells is not currently feasible because available culture methods are either too expensive, or rely on materials that are not be safe for clinical use in humans, such as animal-based proteins.

In this new publication, which appeared on Wednesday July 13 2016 in Nature Communications, a collaborative team that consisted of researchers from The University of Nottingham’s Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Uppsala University and GE Healthcare have identified an improved method for human stem cell culture that, at least in principle, provide a faster and cheaper way for grow stem cells for large-scale industrial production.

The project had its genesis at Uppsala University in Sweden, and the first author, Dr Sara Pijuan-Galitó, is now continuing her work as a Swedish Research Council Research Fellow at Nottingham. Sara said: “By using a protein derived from human blood called Inter-alpha inhibitor, we have grown human pluripotent stem cells in a minimal medium without the need for costly and time-consuming biological substrates. Inter-alpha inhibitor is found in human blood at high concentrations, and is currently a by-product of standard drug purification schemes.

“The protein can make stem cells attach on unmodified tissue culture plastic, and improve survival of the stem cells in harsh conditions. It is the first stem cell culture method that does not require a pre-treated biological substrate for attachment, and therefore, is more cost and time-efficient and paves the way for easier and cheaper large-scale production.”

Lead supervisor Dr Cecilia Annerén, who has a joint position at Uppsala University and at GE Healthcare in Uppsala, said: “As coating is a time-consuming step and adds cost to human stem cell culture, this new method has the potential to save time and money in large-scale and high-throughput cultures, and be highly valuable for both basic research and commercial applications.”

Co-author on the paper Dr Cathy Merry added: “We now intend to combine Inter-alpha inhibitor protein with our innovative hydrogel technology to improve on current methods to control cell differentiation and apply it to disease modelling. This will help research into many diseases but our focus is on understanding rare conditions like Multiple Osteochondroma (an inherited disease associated with painful lumps developing on bones) at the cellular level. Our aim is to replicate the three-dimensional environments that cells experience in the body so that our lab-bench biology is more accurate in modelling diseases.”

Dr Sara Pijuan-Galitó’s next task is to combine the Inter-alpha inhibitor with improved synthetic polymers in collaboration with other regenerative medicine pioneers at the University, Professor Morgan Alexander and Professor Chris Denning. This team plans to further improve current human stem cell culture methods. Their goal is to design an economical and safe method that can be easily translated to large-scale production and deliver the billions of cells necessary to start taking cellular therapeutics to individual patients.

NurOwn, Modified Mesenchymal Stem Cells, Show Clinical Benefit in Phase 2 Trial in ALS Patients


BrainStorm Cell Therapeutics Inc. (BCLI) has developed a cell-based product they call “NurOwn.” NurOwn consists of mesenchymal stem cells that have been cultured to secrete a variety of neurotrophic factors (NTFs). These NTFs are a collection of different growth factors that promote the survival of neurons. NurOwn cells were originally developed in the laboratories of Professor Dani Offen and the late Professor Eldad Melamed, at Tel Aviv University. NurOwn cells have been studied extensively and they clearly have the capacity to migrate to damaged areas in the central nervous system (Sadan O, et al., Stem Cells. 2008 Oct;26(10):2542-51), decrease dopamine depletion in a Parkinson’s disease model system (Barhum Y, et al., J Mol Neurosci. 2010 May;41(1):129-37), can promote the survival of photoreceptors in the retina of animals who optic nerves were damaged (Levkovitch-Verbin H, et al., Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6394-400), decrease quinolinic acid toxicity in an animal model of Huntington’s disease (Sadan O, et al., Exp Neurol. 2012 Apr;234(2):417-27), and improve motor function and survival in a genetic model of Huntington’s disease.

On the strength of these experiments, NurOwn cells have also been tested in clinical trials. Because NTF-secreting MSCs (or, MSC-NTF cells) are designed specifically to treat neurodegenerative diseases, most of the clinical trials, to date, have examined of safety and efficacy of MSC-NTFs in patients with neurological disorders. The safety of NurOwn cells was established in a small phase I/II trial with amyotrophic lateral sclerosis (ALS) patients. This was a small study (12 patients), but showed that, at least in this patients population, intrathecal (injected into the central nervous system) and intramuscular administration of MSC-NTF cells in ALS patients with is safe and patients even showed some indications of clinical benefits, but the study was too small to be definitive about the efficacy of these cells.

Now a recently completed randomized, double-blind, placebo-controlled phase 2 study of NurOwn in ALS patients has found that NurOwn is safe and well tolerated and may also confer clinical benefits upon ALS patients.

According to BrainStorm, this phase 2 study achieved its primary objective (safety and tolerability). No deaths were reported in the study and no patients discontinued participation because of an adverse event. All patients in both active treatment and placebo groups experienced at least one treatment-emergent adverse event that tended to be mild-to-moderate in intensity in both groups. Treatment-related adverse events, as determined by a blinded investigator, occurred slightly more frequently in active-treated patients than in placebo-treated patients (97.2 percent vs. 75.0 percent). The largest differences in frequencies were for the localized reactions of injection site pain and back pain, and fever, headache, and joint pain.

However, NurOwn also achieved multiple secondary efficacy endpoints in this trial. NurOwn showed clear evidence of a clinically significant benefit. Most significantly, the response rates were higher for NurOwn-treated subjects compared to placebo at all time points in the 24 weeks during which when the study was conducted.

This clinical trial conducted at three sites in the U.S: Massachusetts General Hospital, UMass Medical School and the Mayo Clinic. 48 patients were randomized to receive NurOwn cells administered via combined intramuscular and intrathecal injection (n= 36), or placebo (n=12). They were followed monthly for approximately three months before treatment and six months following treatment, and were assessed at 2, 4, 8, 12, 16 and 24 weeks.

The primary investigator in this trial, Robert H. Brown of the University of Massachusetts Medical Center and Medical School said, “These exciting findings clearly indicate that it is appropriate to conduct a longer study with repetitive dosing.”

Subjects treated with NurOwn in this trial showed slowing of progression of ALS and no safety concerns. NurOwn-treated patients also displayed increased levels of growth factors in the cerebrospinal fluid and decreased signs of inflammation after two weeks. These are good indicators that the MSC-NTF cells are orchestrating some kind of beneficial biological effect.

Based on these results, new trials are warranted that will examine repeat dosing at 8 to 12 weeks and employ a larger number of subjects.