Amniotic Fluid Stem Cells Aid Kidney Transplantation Success in a Pig Model


When a kidney patient receives a new kidney, the donated kidney undergoes a brief loss of blood supply followed by a restoration of the blood supply. This phenomenon is called ischemia/reperfusion (IR), and IR tends to cause cell death, followed by rather extensive scarring. Tissue scarring is called tissue fibrosis and a scarred kidney can lead to so-called transplant dysfunction, which means that the transplanted kidney does not work terrible well, and this can cause transplant failure.

Previous studies in laboratory rodents have shown that mesenchymal stem cells from amniotic fluid (afMSCs) are beneficial in protecting against transplant-induced fibrosis (Perin L, et al. PLoS One 2010;5:e9357; Hauser PV, et al. Am J Pathol 2010;177:2011-2021).

Now a research group at INSERM, France led by Thierry Hauet has developed a pig-based model of kidney autotransplantation that is comparable to the human situation with regards to the structure of the kidney and the damage that results from renal ischemia (for papers, see Jayle C, et al. Am J Physiol Renal Physiol 2007; 292: F1082-1093; and Rossard L, et al. Curr Mol Med 2012; 12: 502-505). On the strength of these previous experiments, Hauet’s group has published a new paper in Stem Cells Translational Medicine in which they report that porcine afMSCs can protect against IR-related kidney injuries in pigs.

Hauet and others showed that porcine afMSCs could be easily collected at birth and cultured. These cells showed the ability to differentiate into fat, and bone cells, made many of the same cell surface markers as other types of mesenchymal stem cells (e.g., CD90, CD73, CD44, and CD29), but showed a diminished ability to differentiate into blood vessel cells. When afMSCs are added to extirpated kidneys during the reperfusion (reoxygenation) process in an “in vitro” (fancy way of saying “in a culture dish”) model of organ-preservation, these stem cells significantly increased the survival of blood vessel (endothelial) cells. Endothelial cells are one of the main targets of ischemic injury, and the added cells bucked up these endothelial cells and rescued them from programmed cell death. In addition to these successes, Hauet and others showed that adding intact porcine afMSCs was not necessary, since addition of the culture medium used to grow the afMSCs (conditioned medium or CM) also rescued kidney endothelial cell death. The afMSC-treated kidneys survived because they had significantly larger numbers of blood vessels, and this seems to be the main factor that causes the extirpated kidney to survive intact.

While these experiments were successful, Hauet and others know that unless they were able to show that these cells improved kidney transplant outcomes in a living animal, their research would not be deemed clinically relevant. Therefore, Hauet and others injected afMSCs into the renal artery of pigs that had received a kidney transplant six days after the transplant. IR injuries following kidney transplants led to increased serum creatinine levels, but those pigs that had been infused with afMSCs showed reduced creatinine levels and lower protein levels in their urine (proteinuria). In fact, seven days after the stem cell infusion, the urine creatinine and protein levels had returned to pre-transplant levels. Three months after the transplant, the pigs were put down, and then the kidneys were subjected to tissue analyses. Microscopic examination of tissue slices from these kidneys showed that afMSC injection preserved the structural integrity of microscopic details of the kidneys and reduced the signs of inflammation. Control animals that were not treated with afMSCs showed disruption of the microscopic structures of the kidneys and extensive inflammation and scarring. Also, because the kidney controls blood chemistry, a comparison of the blood chemistries of these two groups of animals showed that the blood chemistries of the afMSC-treated animals were normal as opposed to the control animals.

Amniotic Fluid Stem Cells Aid Kidney Transplantation in Porcine Model

Molecular analyses also showed a whole host of pro-blood vessel molecules in the kidneys of the afMSC-treated pigs. VEGFA (pro-angiogenic growth factor), and Ang1 (capillary structure strengthening and maintenance of vessel stability), proteins were increased in the kidneys of afMSC animals compared to control animals. Thus the infused stem cells increased the expression of pro-blood vessel molecules, which led to the formation of larger quantities of blood vessels, reduced cell death and decreased inflammation.

These findings demonstrate the beneficial effects of infused afMSCs on kidney transplant. Since afMSCs are easy to isolate and grow in culture, secrete proangiogenic and growth factors, and can differentiate into many cell lineages, including renal cells (see Perin L, et al. Cell Prolif 2007; 40: 936-948; De Coppi P, et al. Nat Biotechnol 2007; 25: 100-106; and In ‘t Anker PS, et al. Stem Cells 2004;22:1338-1345). This makes these cells a viable candidate for clinical application. This study also highlights pigs as a preclinical model as a powerful tool in the assessment of stem cell-based therapies in organ transplantation.

Enzyme Helps Stem Cells Improve Recovery From Limb Injury


Ischemia refers to the absence of oxygen in a tissue or organ. Ischemia can cause cells to die and organs to fail and protecting cells, tissues and organs from ischemia-based damaged is an important research topic.

Perfusion refers to the restoration of the blood flow to an organ or tissue that had experienced a cessation of blood flow for a period of time. Even though the restoration of circulation is far preferable to ischemia, perfusion has its own share of side effects. For example, perfusion heightens cells death and inflammation and this can greatly exacerbate the physical condition of the patient after a heart attack, traumatic limb injury, or organ donation.

“Think about trying to hold onto a nuclear power plant after you unplug the electricity and cannot pump water to cool it down,” said Jack Yu, Chief of Medical College of Georgia’s Section of Plastic and Reconstructive Surgery. “All kinds of bad things start happening,”

Earlier studies in the laboratory of Babak Baban have shown that stem cells can improve new blood vessel growth and turn down the severe inflammation after perfusion (see Baban, et al., Am J Physiol Regul Integr Comp Physiol. 2012 Dec;303(11):R1136-46 and Mozaffari MS, Am J Cardiovasc Dis. 2013 Nov 1;3(4):180-96). Baban is an immunologist in the Medical College of Georgia and College of Dental Medicine at Georgia Regents University.

The new study from the Baban laboratory shows that an enzyme called indolamine 2,3,-dioxygenase or IDO can regulate inflammation during perfusion. IDO is widely known to generate immune tolerance and dampen the immune response in the developing embryo and fetus, but it turns out that stem cells also make this enzyme.

In their study, Including IDO with bone marrow-derived stem cells increased the healing efficiency of injected stem cells.

 Treatment Effect on Toe Spread Ratio Averages (48–72 hours after treatment). The outcome of stem cell (SC) therapy indicates that IDO may improve recovery. IDO-KO mice treated with SC demonstrated an accelerated recovery compared with IDO-KO treated with PBS (p-value <0.05). However, the WT mice treated with SC showed the greatest recovery of intrinsic paw function when expressed as a ratio comparing it to the non-injured paw (p-value = 0.027). Functional recovery from ischemia-reperfusion (IR) injury in the different treatment groups was measured, using a modified version of walking track analysis. For each subject, toe spread was measured in the IR limb (Ti) and control contralateral limb (Tc). The ratio of the toe spread in the injured limb (Ti) to the control limb (Tc) was then calculated by Ti/Tc. A ratio of 1 indicates 100% recovery or equal width and thus normal intrinsic function. When comparing the WT group treated with stem cells to those treated with PBS, a 45% increase in recovery was seen demonstrating the efficacy of stem cell therapy alone in the presence of an environment where IDO expression is present. doi:10.1371/journal.pone.0095720.g001
Treatment Effect on Toe Spread Ratio Averages (48–72 hours after treatment).
The outcome of stem cell (SC) therapy indicates that IDO may improve recovery. IDO-KO mice treated with SC demonstrated an accelerated recovery compared with IDO-KO treated with PBS (p-value <0.05). However, the WT mice treated with SC showed the greatest recovery of intrinsic paw function when expressed as a ratio comparing it to the non-injured paw (p-value = 0.027). Functional recovery from ischemia-reperfusion (IR) injury in the different treatment groups was measured, using a modified version of walking track analysis. For each subject, toe spread was measured in the IR limb (Ti) and control contralateral limb (Tc). The ratio of the toe spread in the injured limb (Ti) to the control limb (Tc) was then calculated by Ti/Tc. A ratio of 1 indicates 100% recovery or equal width and thus normal intrinsic function. When comparing the WT group treated with stem cells to those treated with PBS, a 45% increase in recovery was seen demonstrating the efficacy of stem cell therapy alone in the presence of an environment where IDO expression is present.
doi:10.1371/journal.pone.0095720.g001

Also indicators of inflammation, swelling, and cell death decreased in animals that received bone marrow-derived stem cell injections and had IDO.  Baban’s group also showed that the injected stem cells increased endogenous expression of IDO in the perfused tissues.

BMDScs can enhance IDO and regulatory T cells while reducing inflammatory cytokines in the hind limb IR injury. Immunohistochemical analysis of paraffin embedded tissues from murine model with IRI of hind limb showed that treating the animals with BMDSCs in an IDO sufficient microenvironment first: increased IDO and FOXP3 expression (panels A and B, red arrows), while decreased the inflammatory cytokines, IL-17 and IL-23 (panels C and D). Anti inflammatory cytokine, IL-10, was increased as demonstrated in panel E. All together, these analysis suggest a potential therapeutic role for BMDSCs, re-enforced by possible IDO dependent mechanisms. All pictures are 400X magnification
BMDScs can enhance IDO and regulatory T cells while reducing inflammatory cytokines in the hind limb IR injury.
Immunohistochemical analysis of paraffin embedded tissues from murine model with IRI of hind limb showed that treating the animals with BMDSCs in an IDO sufficient microenvironment first: increased IDO and FOXP3 expression (panels A and B, red arrows), while decreased the inflammatory cytokines, IL-17 and IL-23 (panels C and D). Anti inflammatory cytokine, IL-10, was increased as demonstrated in panel E. All together, these analysis suggest a potential therapeutic role for BMDSCs, re-enforced by possible IDO dependent mechanisms. All pictures are 400X magnification

Baban thinks that even though these experiments were performed in mice, because mice tend to be a rather good model system for limb perfusion/ischemia, these results might be applicable in the clinic.  “We don’t want to turn off the immune system, we want to turn it back to normal,” said Baban

According to Baban’s collaborator, Jack Yu, even a short period of inadequate blood supply and nutrients results in the rapid accumulation of destructive acidic metabolites, reactive oxygen species (also known as free radicals), and cellular damage.  The power plant of the cell, small structures called the mitochondria, tend to be one of the earliest casualties of ischemia/perfusion.  Since mitochondria require oxygen to make a chemical called ATP, which is the energy currency in cells, a lack of oxygen makes the mitochondria leaky, swollen and dysfunctional.

“The mitochondria are very sick,” said Yu. ” When blood flow is restored, it can put huge additional stress on sick powerhouses.  “They start to leak things that should not be outside the mitochondria.”

Without adequate energy production and a cellular power plant that leaks, the cells fill with toxic byproducts that cause the cells to commit a kind of cellular hari-kari.  Inflammation is a response to dying cells, since the role of inflammation is to remove dead or dying cells, but inflammation can give the coup de grace to cells that are already on the edge.  Therefore, inflammation can worsen the problem of cell death.

Even though these results were applied to limb ischemia perfusion, Baban and his colleagues think that their results are applicable to other types of ischemia perfusion events, such as heart attacks and deep burns.  Yu, for example, has noticed that in the case of burn patients, the transplantation of new tissue into areas that have undergone ischemia perfusion can die off even while the patient is still in the operating room.

“It cuts across many individual disease conditions,”  said Yu.  Transplant centers already are experimenting with pulsing donor organs to prevent reperfusion trauma.

The next experiments will include determining if more is better.  That is, if giving more stem cells will improve the condition of the injured animal.  In these experiments, which were published in the journal PLoS One, only one stem cell dose was given.  Also, IDO-enhancing drugs will be examined for their ability to prevent reperfusion damage.

Even though stem cells are not given to patients in hospitals after reperfusion, stem cell-based treatments are being tested for their ability to augment healing after reperfusion.  Presently, physicians reestablish blood flow and then give broad-spectrum antibiotics.  The results are inconsistent.  Hopefully, this work by Baban and others will pave the road for future work that leads to human clinical trials.

Prostaglandin E Switches Endoderm Cells From Pancreas to Liver


The gastrointestinal tract initially forms as a tube inside the embryo. Accessory digestive organs sprout from this tube in response to inductive signals from the surrounding mesoderm. Both the pancreas and the liver form at about the same time (4th week after fertilization) and at about the same place in the embryonic gut (the junction between the foregut and the midgut).

Pancreatic development

The pancreas forms as ventral and dorsal outgrowths that eventually fuse together when the gut rotates. The liver forms from the “hepatic diverticulum” that grows from the gut about 23-26 days after fertilization. These liver bud cells work with surrounding tissues to form the liver.

Liver development

What determines whether an endodermal cell becomes a liver or pancreatic precursor cell?

Wolfram Goessling and Trista North from the Harvard Stem Cell Institute (HSCI) have identified a gradient of the molecule prostaglandin E (PGE) in zebrafish embryos that acts as a liver/pancreas switch.

Postdoctoral researcher Sahar Nissim in the Goessling laboratory has uncovered how PGE toggles endodermal cells between the liver-pancreas fate. Nissim has shown that endodermal cells exposed to more PGE become liver cells and those exposed to less PGE become pancreas. This is the first time that prostaglandins have been reported as the factor that can switch cell identities from one fate to another.

After completing these experiments, HSCI scientists collaborated with colleague Richard Mass to determine if their PGE-mediated cell fate switch also occurred in mammals. Here again, Richard Sherwood from the Mass established that mouse endodermal cells became liver if exposed to PGE and pancreas if exposed to less PGE.  Sherwood also demonstrated that PGE enhanced liver growth and regeneration.

Goessling become interested in PGE in 2005, when a chemical screen identified PGE as an agent that amplified blood stem cell populations in zebrafish embryos. Goessling that transitioned this work to human patients, and a phase 1b clinical trial that uses PGE to increase umbilical cord blood transplants has just been completed.

PGE might be useful for instructing pluripotent human stem cells that have been differentiated into endodermal cells to form completely functional, mature liver cells that can be used to treatment patients with liver disease.

Kidney Tubular Cells Formed from Stem Cells


A collaborative effort between several research teams has successfully directed stem cells to differentiate into kidney tubular cells. This is a significant advance that could hasten the day when stem cell-based treatments are used to treat kidney failure.

Chronic kidney disease is a major global public health problem. Unfortunately, once patients progress to kidney failure, their treatment options are limited to dialysis and kidney transplantation. Regenerative medicine, whose goal is to rebuild or repair tissues and organs, might offer a promising alternative.

A team of researchers from the Harvard Stem Cell Institute (Cambridge, Mass.), Brigham and Women’s Hospital (Boston) and Keio University School of Medicine (Tokyo) that included Albert Lam, M.D., Benjamin Freedman, Ph.D. and Ryuji Morizane, M.D., Ph.D., has been diligently developing strategies for the past five years to develop strategies to direct human pluripotent stem cells (human embryonic stem cells or hESCs and human induced pluripotent stem cells or iPSCs) to differentiate into kidney cells for the purposes of kidney regeneration.

“Our goal was to develop a simple, efficient and reproducible method of differentiating human pluripotent stem cells into cells of the intermediate mesoderm, the earliest tissue in the developing embryo that is fated to give rise to the kidneys,” said Dr. Lam. Lam also noted that these intermediate mesoderm cells would be the “starting blocks” for deriving more specific kidney cells.

Lam and his collaborators discovered a blend of chemicals which, when added to stem cells in a precise sequence, caused the stem cells to turn off their stem cell-specific genes and activate those genes found in kidney cells. Furthermore, the activation of the kidney-specific genes occurred in the same order that they turn on during embryonic kidney development.

At E10.5, the metanephric mesenchyme (red) comprises a unique subpopulation of the nephrogenic cord (yellow). Expression of the Glial-derived neurotrophic factor (Gdnf) is resticted to the metanephric mesenchyme by the actions of transcriptional activators, secreted factors, and inhibitors. GDNF binds the Ret receptor and promotes the formation of the ureteric bud, an outgrowth from the nephric duct (blue). Ret initially depends upon the Gata3 transcription factor for its expression in the nephric duct. Spry1 acts as an intracellular inhibitor of the Ret signal transduction pathway. BMP4 inhibits GDNF signaling and is in turn inhibited by the Grem1 binding protein. At 11.5, the ureteric bud has branched, forming a T-shaped structure. Each ureteric bud tip is surrounded by a cap of condensed metanephric mesenchyme. Reciprocal signaling between the cap mesenchyme and ureteric bud, as well as signals coming from stromal cells (red), maintain expression of Ret in the bud tips and Gdnf in the cap mesenchyme. Nephrons are derived from cap mesenchyme cells that form pretubular aggregates and then renal vesicles on either side of each ureteric bud tip. Wnt9b and Wnt4 induce nephron formation and are necessary for maintaining ureteric bud branching. The Six2 transcription factor prevents ectopic nephron formation. BMP7 promotes survival of the cap mesenchyme. Not all genes implicated in metanephros formation are shown for clarity (see text for further details). Green arrows indicate the ligand-receptor interaction between GDNF and Ret. Black arrows indicate the epistasis between genes but in most cases it is not known if the interactions are direct. T-shaped symbols indicate inhibitory interactions.
At E10.5, the metanephric mesenchyme (red) comprises a unique subpopulation of the nephrogenic cord (yellow). Expression of the Glial-derived neurotrophic factor (Gdnf) is resticted to the metanephric mesenchyme by the actions of transcriptional activators, secreted factors, and inhibitors. GDNF binds the Ret receptor and promotes the formation of the ureteric bud, an outgrowth from the nephric duct (blue). Ret initially depends upon the Gata3 transcription factor for its expression in the nephric duct. Spry1 acts as an intracellular inhibitor of the Ret signal transduction pathway. BMP4 inhibits GDNF signaling and is in turn inhibited by the Grem1 binding protein. At 11.5, the ureteric bud has branched, forming a T-shaped structure. Each ureteric bud tip is surrounded by a cap of condensed metanephric mesenchyme. Reciprocal signaling between the cap mesenchyme and ureteric bud, as well as signals coming from stromal cells (red), maintain expression of Ret in the bud tips and Gdnf in the cap mesenchyme. Nephrons are derived from cap mesenchyme cells that form pretubular aggregates and then renal vesicles on either side of each ureteric bud tip. Wnt9b and Wnt4 induce nephron formation and are necessary for maintaining ureteric bud branching. The Six2 transcription factor prevents ectopic nephron formation. BMP7 promotes survival of the cap mesenchyme. Not all genes implicated in metanephros formation are shown for clarity (see text for further details). Green arrows indicate the ligand-receptor interaction between GDNF and Ret. Black arrows indicate the epistasis between genes but in most cases it is not known if the interactions are direct. T-shaped symbols indicate inhibitory interactions.

The investigators were able to differentiate both hESCs and human iPSCs into cells that expressed the PAX2 and LHX1 genes, which are two key elements of the intermediate mesoderm; the developmental tissue from which the kidney develops. The iPSCs were derived by reprogramming fibroblasts obtained from adult skin biopsies into pluripotent cells. The differentiated cells expressed multiple genes found in intermediate mesoderm and spontaneously produced tubular structures that expressed those genes found in mature kidney tubules.

The researchers could then differentiate the intermediate mesoderm cells into kidney precursor cells that expressed the SIX2, SALL1 and WT1 genes. These three genes designate an embryonic tissue called the “metanephric cap mesenchyme.” Metanephric cap mesenchyme is a critical tissue for kidney differentiation. During kidney development, the metanephric cap mesenchyme contains a population of progenitor cells that give rise to nearly all of the epithelial cells of the kidney (epithelial cells or cells in a sheet, generate the lion’s share of the tubules of the kidney).

Metanephric cap mesenchyme is is red
Metanephric cap mesenchyme is is red

The cells also continued to behave like kidney cells when transplanted into adult or embryonic mouse kidneys. This gives further hope that these investigators might one day be able to create kidney tissues that could function in a patient and would be fully compatible with the patient’s immune system.

The findings are published online in Journal of the American Society of Nephrology.

Scientists Generate “Mini-kidney” Structures from Human Stem Cells


Kidney Disease represents a major and unsolved health issue worldwide. Once damaged by disease, kidneys rarely recover their original level of function, and this highlights the urgent need for better knowledge of kidney development and physiology.

Now, a team of researchers led by scientists at the Salk Institute for Biological Studies has developed a novel platform to study kidney diseases. This new platform should open new avenues for the future application of regenerative medical strategies to restore kidney function.

For the first time, the Salk researchers have generated three-dimensional kidney structures from human stem cells. These findings were reported November 17, 2013 in Nature Cell Biology, and they suggest new ways to study the development and diseases of the kidneys and to discover and test new drugs that target human kidney cells.

Scientists had created precursors of kidney cells using stem cells as recently as this past summer, but the Salk team was the first to coax human stem cells into forming three-dimensional cellular structures similar to those found in our kidneys.

“Attempts to differentiate human stem cells into renal cells have had limited success,” says senior study author Juan Carlos Izpisua Belmonte, a professor in Salk’s Gene Expression Laboratory and holder of the Roger Guillemin Chair. “We have developed a simple and efficient method that allows for the differentiation of human stem cells into well-organized 3D structures of the ureteric bud (UB), which later develops into the collecting duct system.”

The Salk findings demonstrate for the first time that pluripotent stem cells capable of differentiating into the many cells and tissue types that make up the body can be induced to differentiate into those cells found in the ureteric bud, which is an early developmental structure of the kidneys. Furthermore, these same cells can differentiate further into three-dimensional structures in organ cultures. Ureteric bud cells form the early stages of the human urinary and reproductive organs during development and later develop into a conduit for urine drainage from the kidneys. Izpisua Belmonte’s research group accomplished this with both human embryonic stem cells and induced pluripotent stem cells (iPSCs), human cells from the skin that have been reprogrammed into their pluripotent state.

Kidney development

After generating iPSCs that demonstrated pluripotent properties and were able to differentiate into mesoderm, the embryonic germ cell layer from which the kidneys develop, the Salk Institute team used growth factors known to be essential during the natural development of our kidneys to culture both iPSCs and embryonic stem cells.  The combination of signals from these growth factors, molecules that guide the differentiation of stem cells into specific tissues, committed the cells to become progenitors that exhibit clear characteristics of renal cells in only four days.

The researchers then guided these cells to further differentiate into organ structures similar to those found in the ureteric bud by culturing them with kidney cells from mice. This demonstrated that the mouse cells were able to provide the appropriate developmental cues to allow human stem cells to form three-dimensional structures of the kidney.

Izpisua Belmonte’s team also tested their protocol on iPSCs from a patient clinically diagnosed with polycystic kidney disease (PKD), a genetic disorder characterized by multiple, fluid-filled cysts that can lead to decreased kidney function and kidney failure. They found that their methodology could produce kidney structures from patient-derived iPSCs.

Polycystic kidneys
Polycystic kidneys

Because of the many clinical manifestations of the disease, neither gene- nor antibody-based therapies are realistic approaches for treating PKD. The Salk team’s technique might help circumvent this obstacle and provide a reliable platform for pharmaceutical companies and other investigators studying drug-based therapeutics for PKD and other kidney diseases.

“Our differentiation strategies represent the cornerstone of disease modeling and drug discovery studies,” says lead study author Ignacio Sancho-Martinez, a research associate in Izpisua Belmonte’s laboratory. “Our observations will help guide future studies on the precise cellular implications that PKD might play in the context of kidney development.”

An Efficient Method for Converting Fat Cells to Liver Cells


I have a friend whose wife has systemic lupus erythematosis, and her liver has taken a beating as a result of this disease. She has never had a drop of alcohol for decades and yet she has a liver that looks like the liver of a 70-year-old alcoholic. The scarring of the liver as result of repeated damage and healing has seriously compromised her liver function. She is now a candidate for a liver transplant. Wouldn’t it be nice to simply give her liver cells to heal her liver?

This dream came a little closer to becoming reality in October of this year when scientists at Stanford University developed a fast and efficient way to convert fat cells isolated from routine liposuction into liver cells. Even though these experiments used mice, the stem cells were isolated from human liposuction procedures.

This experiment did not use embryonic stem cells or induced pluripotent stem cells to generate liver cells. Instead it used adult stem cells from fat.

Fat-based stem cells

The liver builds complex molecules, filters and breaks down waste products and toxic substances that might otherwise accumulate to dangerous concentrations.

The liver, unlike other organs, has a capacity to regenerate itself to a significant extent, but the liver’s regenerative abilities cannot overcome the consequences of acute liver poisoning, or chronic damage to the liver, as a result of hepatitis, alcoholism, or drug abuse.

For example, acetaminophen (Tylenol) is a popular pain-reliever, but abusing acetaminophen can badly damage the liver. About 500 people die each year from abuse of acetaminophen, and some 60,000 emergency-room visits and more than 25,000 hospitalizations annually are due to acetaminophen abuse. Other environmental toxins, such as poisonous mushrooms, contribute more cases of liver damage.

Fortunately, the fat-to-liver protocol is readily adaptable to human patients, according to Gary Peltz, professor of anesthesia and senior author of this study. The procedure takes about nine days, which is easily fast enough to treat someone suffering from acute liver poisoning, who might die within a few weeks without a liver transplant.

Some 6,300 liver transplants are performed annually in he United States, and approximately 16,000 patients are on the waiting list for a liver. Every year more than 1,400 people die before a suitable liver can be found for them.

Even though liver transplantations save the lives of patients, the procedure is complicated, not without risks, and even when successful, is fraught with after effects. The largest problem is the immunosuppressant drugs that live patients must take in order to prevent their immune system from rejecting the transplanted liver. Acute rejection is an ongoing risk in any solid organ transplant, and improvements in immunosuppressive therapy have reduced rejection rates and improved graft survival. However, acute rejection still develops in 25% to 50% of liver transplant patients treated with immunosuppressants. Chronic rejection is somewhat less frequent and is declining and occurs in approximately 4% of adult liver transplant patients.

Peltz said, “We believe our method will be transferable to the clinic, and because the new liver tissue is derived from a person’s own cells, we do not expect that immunosuppressants will be needed.”

Peltz also noted that fat-based stem cells do not normally differentiate into liver cells. However, in 2006, a Japanese laboratory developed a technique for converting fat-based stem cells into induced liver cells (called “i-Heps” for short). This method, however, is inefficient, takes 30 days, and relies on chemical stimulation. In short, this technique would not provide enough material to regenerate a liver.

The Stanford University group built upon the Japanese work and improved it. Peltz’s group used a spherical culture and were able to convert fat-bases stem cells into i-Heps in nine days and with 37% efficiency (the Japanese group only saw a 12% rate). Since the publication of their paper, Peltz said that workers in his laboratory have increased the efficiency to 50%.

Dan Xu, a postdoctoral scholar and the lead author of this study, adapted the spherical culture methodology from early embryonic-stem-cell literature. However, instead of growing on flat surfaces in a laboratory dish, the harvested fat cells are cultured in a liquid suspension in which they form spheroids. Peltz noted that the cells were much happier when they were grown in small spheres.

Once they had enough cells, Peltz and his co-workers injected them into immune-deficient laboratory mice that accept human grafts. These mice were bioengineered in 2007 as a result of a collaboration between Peltz and Toshihiko Nishimura from the Tokyo-based Central Institute for Experimental Animals. These mice had a viral thymidine kinase gene inserted into their genomes and when treated with the drug gancyclovir, the mice experienced extensive liver damage.

After gancyclovir treatment, Peltz and his coworkers injected 5 million i-Heps into the livers of these mice, using ultrasound-guided injection procedures, which is typically used for biopsies.

Four weeks later, the mice expressed human blood proteins and 10-20 percent of the mouse livers were repopulated with human liver cells. Blood tests also showed that the mouse livers, which were greatly damaged previous to the transplantation, were processing nitrogenous wastes properly. Structurally, the mouse livers contained human cells that made human bile ducts, and expressed mature human liver cells.

Other tests established that the i-Heps made from fat-based stem cells were more liver-like than i-Heps made from induced pluripotent stem cells.

Two months are injection of the i-Heps, there was no evidence of tumor formation.

Peltz said, “To be successful, we must regenerate about half of the damaged liver’s original cell count.” With the spherical culture, Peltz is able to produce close to one billion injectable i-Heps from 1 liter of liposuction aspirate. The cell replication that occurs after injection expands that number further to over 100 billion i-Heps.

If this is possible, then this procedure could potentially replace liver transplants. Stanford University’s Office of Technology Licensing has filed a patent on the use of spherical culture for hepatocyte (liver cell) induction. Peltz’s group is optimizing this culture and injection techniques,talking to the US Food and Drug Administration, and gearing up for safety tests on large animals. Barring setbacks, the new method could be ready for clinical trials within two to three years, according the estimations by Peltz.

Repairing Damaged Organs with New Blood Vessel-Making Stem Cells


A damaged organ usually needs to be removed (spleen or single kidney) or a new organ must be transplanted to replace the damaged organ (liver, heart, lungs, kidney). Wouldn’t it be terrific to inject blood vessel-making stem cells and let the organ heal itself? Such a strategy would render organ transplantation obsolete.

Studies by scientists at the Weill Cornell Medical College in New York have shown that endothelial cells – the cells that line the inside of blood vessels – can drive the regeneration of organ by releasing beneficial, organ-specific molecules. These organ-specific molecules were identified in a genome-wide screen that uncovered all the genes actively expressed in endothelial cells. Many of these genes found in this screen were previously not known to be expressed in endothelial cells. Researchers also found that organ dictate the structure and function of their own blood vessels and this includes the organ-specific repair molecules they elicit from endothelial cells.

Endothelial_cell

Shahin Rafii, principal investigator of this work, is a professor of genetic medicine and co-director of the medical college’s Ansary Stem Cell Institute and the Tri-SCI Stem Center. Rafii is also a Howard Hughes Medical Institute investigator.

According to Rafii, when an organ in injured, its blood vessels may not have the ability to repair the organ on their own because of the damage to the blood vessels themselves, and the inflammation these same blood vessels might be experiencing.

“Our work suggests that an infusion of engineered endothelial cells could engraft into the injured tissue and acquire the capacity to repair the organ. These studies – along with the first molecule atlas of organ-specific blood vessel cells reported in the Developmental Cell paper (Developmental Cell 26, 204–219, July 29, 2013) – will open up a whole new chapter in translational vascular medicine and will have a major therapeutic application.”

Rafii continued: “Scientists had thought blood vessels in each organ are the same, that they exist to deliver oxygen and nutrients. But they are very different.” According to Rafii, different organs are endowed with blood vessels with unique shape and function and delegated with the difficult task of complying with the metabolic demands of that organ.

In one study from the Rafii lab, nine different tissues were examined, in addition to bone marrow and liver that had undergone a traumatic injury. To examine the blood vessels from each of these tissues, Rafii’s laboratory development a very efficient way to make endothelial cells from embryonic stem cells. Daniel Nolan, the lead author of this work, said that this protocol produced a “a pure population of endothelial cells in a very rapid time frame.”

ECs Derived from hESCs Phenocopy Adult Mouse Tissue-Specific Capillaries (A) Schema of in vitro conditions to support the differentiation and identification of hESC-derived vasculature. hESCs are grown on an E4-ORF1 EC feeder layer and transduced with a VE-Cadherin-Orange reporter gene. VE-Cadherin-Orange+ vascular networks are readily identifiable by day 10. (B) Flow cytometry data depicting the expression of VPR-Orange on hESC-derived CD31+ ECs. These VPR+ ECs have distinct populations based on the expression of either CXCR4 (teal) or CD133 (purple). (C) VPR+CXCR4+CD133− and VPR+CD133+CXCR4− ECs are capable of forming distinct clusters of ECs in hESC cultures. (D) Heat maps of the genes, which were common in their statistically significant differential expression (Benjamini-Hochberg adjusted p < 0.05) between hESC-derived vasculature and adult mouse heart and brain tissues. (E) VPR+CXCR4+CD133− and VPR+CD133+CXCR4− ECs were analyzed for cKit and CD36 levels via flow cytometry. Validation of the higher expression of CD36 and Kit in the CXCR4+ ECs is shown. (F) Heat map of K-Mean clusters depicting the results of de novo motif discovery among non-ECs, CXCR4+VPR+ ECs, and CD133+VPR+ ECs. Candidate binding partners to the motifs are listed.
ECs Derived from hESCs Phenocopy Adult Mouse Tissue-Specific Capillaries.  (A) Schema of in vitro conditions to support the differentiation and identification of hESC-derived vasculature. hESCs are grown on an E4-ORF1 EC feeder layer and transduced with a VE-Cadherin-Orange reporter gene. VE-Cadherin-Orange+ vascular networks are readily identifiable by day 10.  (B) Flow cytometry data depicting the expression of VPR-Orange on hESC-derived CD31+ ECs. These VPR+ ECs have distinct populations based on the expression of either CXCR4 (teal) or CD133 (purple).  (C) VPR+CXCR4+CD133− and VPR+CD133+CXCR4− ECs are capable of forming distinct clusters of ECs in hESC cultures.  (D) Heat maps of the genes, which were common in their statistically significant differential expression (Benjamini-Hochberg adjusted p < 0.05) between hESC-derived vasculature and adult mouse heart and brain tissues.  (E) VPR+CXCR4+CD133− and VPR+CD133+CXCR4− ECs were analyzed for cKit and CD36 levels via flow cytometry. Validation of the higher expression of CD36 and Kit in the CXCR4+ ECs is shown.  (F) Heat map of K-Mean clusters depicting the results of de novo motif discovery among non-ECs, CXCR4+VPR+ ECs, and CD133+VPR+ ECs. Candidate binding partners to the motifs are listed.

From these laboratory-made endothelial cells (ECs), Rafii and his colleagues were able to take snapshots of all the genes expressed in various populations of ECs can compose the different vascular beds of the body. From these studies, Raffi and others discovered that ECs possess specific genes that code for unique growth factors, adhesion molecules, and factors regulating metabolism.

“We knew that these gene products were critical to the health of a particular tissue, but before our study it was not appreciated that these factors originate in the endothelial cells,” said Nolan.

Olivier Elemento, who performed much of the complex computational studies in this paper, noted, “We also found that the healing, or regeneration of tissue, in the liver and in the bone marrow were unexpectedly different – including the repair molecules, known as angiocrine growth factors, that were expressed by the endothelial cells.”

Blood vessels differ among the various organs because the ECs have to constantly adapt to the metabolic, biomechanical, inflammatory, and immunological needs of that particular organ, said Michael Ginsberg, a senior postdoctoral research associate in Rafii’s lab. “And we have now found how endothelial cells have learned to behave differently in each organ and to adjust to the needs of those organs,” he said.

This work from Raffii’s laboratory raises the question as to how ECs have the capacity to adapt to the biological demands of each organ. Is it possible to design “immature” ECs that could allow scientists to identify the means by which particular microenvironmental cues educate these cells to become more specialized endothelial cells?

To address this question, Rafii and his army of graduate students, postdoctoral researchers, technicians, and visiting scientists made ECs from mouse embryonic stem cells and discovered that these cells were responsive to microenvironmental cues, and were also transplantable and functional.

Sina Rabbany, adjunct associate professor of genetic medicine and bioengineering at Weill Cornell Medical College said that embryonic stem cell derived ECs are “very versatile, so they can be transplanted into different tissues, become educated by the tissue, and acquire the characteristics of the native endothelial cells.” These ECs can also be grown in the lab into large numbers.

“We now know what it takes to keep these cells healthy, stable, and viable for transplantation,” said Rabbany.

When the ECs made by Rabbany were transplanted into the livers of laboratory mice, they integrated into the host tissue and become indistinguishable from the native tissue. Similar results were observed when these laboratory-derived ECs were transplanted into kidneys.