Antiaging Glycoprotein Quadruples Viability of Stem Cells in Retina


When pluripotent stem cells are differentiated into photoreceptor cells, and then implanted into the retina at the back of the eye of a laboratory animal, they do not always survive.  However, pre-treatment of those cells with an antiaging glycoprotein (AAGP), made by ProtoKinetix, causes those transplanted cells to be 300 times more viable than cells not treated with this protein according to a study recently accepted for publication.

AAGP was invented by Dr. Geraldine-Castelot-Deliencourt and developed in partnership with the Institute for Scientific Application (INSA) of France. For her work in this area Dr. Castelot-Deliencourt was honored with France’s highest award for scientific accomplishment, the Francinov Award, in 2006.

ProtoKinetix, Incorporated said that a paper submitted by Kevin Gregory-Evans on the company’s AAGP was accepted for publication by the Journal of Tissue Engineering and Regenerative Medicine for publication.

AAGP significantly improves the viable yield of stem cells transplanted in retinal tissue, according to experiments conducted at the University of British Columbia in the laboratory of Dr. Kevin Gregory-Evans.

AAGP seems to protect cells from inflammation-induced cell death. This is based on experiments in which cultured cells that were treated with AAGP were significantly more resistant to hydrogen peroxide, ultraviolet A (wavelengths of 320-400 nanometers), and ultraviolet C (shorter than 290 nm). In addition, when exposed to an inflammatory mediator, interleukin β (ILβ), AAGP exposure reduced COX-2 expression three-fold. COX-2 is an enzyme that is induced by the various stimuli that stimulate Inflammation. It is, therefore, an excellent read-out of the degree to which inflammation has been induced. The fact that AAGP prevented the induction of COX-2 shows that this protein can inhibit the induction of inflammation. These data suggest that AAGP™ may not just be usable in cell and organ storage but also in pharmacological treatments.

A New Way to Prepare Labeled Stem Cells


Researchers from Carnegie Mellon University in the laboratory of Chien Ho have designed a new method for preparing stem cells that can be easily detected on an magnetic resonance imaging (MRI) scan.

This new procedure not only can produce more native stem cells, but labels them with a FDA approval approved iron-oxide nanoparticle that is marketed under the name Feraheme (Ferumoxytol).

Mesenchymal stem cells extracted and isolated from bone marrow or other tissues can readily generate bone, cartilage, and fat in the laboratory. Mesenchymal stem cells (MSCs) are being tested in 360 registered clinical trials. The results of these trials have been mixed, and for these and other reasons, it is important to track implanted stem cells.

Tracking MSCs requires labeling the cells in some manner, and Dr Ho and his group discovered that superparamagnetic iron-oxide (SPIO) contrast agent, which are easily seen on MRI scans. Fortunately, MSCs have an intrinsic capacity to internalize SPIO under the right conditions. Ho and his coworkers devised a way to create the right conditions in culture so that MSCs in culture can readily take up ferumoxytol nanoparticles quite effectively.

Labeling MSCs with Feraheme

This new culture method takes MSCs extracted from bone marrow, isolates them, and then expands them in culture. Then the Carnegie group placed the MSCs into a culture system that mimics the environment cells normally experience inside someone’s body. This “in-vivo” culture method not only drives the MSCs to optimize their size, but it aggrandizes their SPIO internalization abilities.

Size optimization is very important, since smaller MSCs tend to be more effective for regenerative therapies than larger MSCs. This optimization produces high-quality cells that are also labeled and can be tracked after implantation into a patient’s body.

This impressive work was published in the journal Scientific Reports, 2016; 6: 26271 DOI: 10.1038/srep26271.

Induced Pluripotent Stem Cells – Addressing Safety Concerns


In 2012, John B. Gurdon and Shinya Yamanaka won the Nobel Prize in Physiology or Medicine “for the discovery that mature cells can be reprogrammed to become pluripotent.” Since that time, induced pluripotent stem cells (iPSCs) have largely taken the stem cell scene by storm. Because of the ease with which iPSCs can be made from just about any mature cell type, and because they can be made so more cheaply and faster than embryonic stem cells, they are the perfect pluripotent stem cell for laboratory use. The additional advantage to iPSCs is that can instantly reflect the genetic defect of the patient from whom they are made. Therefore, they are provide excellent model systems for a variety of genetic diseases and provide a kind of “disease in a dish” system by which the cellular and molecular characteristics of a disease can be modeled in cell culture.

In addition to their experimental utility, many scientists have sought to promote iPSCs for clinical purposes. However, before iPSCs can be used in the clinic, their safety must be established beyond question. Despite their success in many animal models (most in rodents), the long-term safety of iPSC derivatives has yet to be firmly demonstrated.

To that end, three different experiments have added to our concerns about the safety of iPSCs. For these and other reasons, several scientists have hypothesized that if iPSCs derivatives are going to be used in a clinical setting, they will need to come from young, healthy donors. In particular, blood cells from umbilical cord blood can be matched to just about any tissue and can be easily converted into iPSCs. Therefore, allogeneic iPSC derivatives seem to be the best way to go about treating particular diseases.

That being said, there are three studies about the safety of iPSC derivatives that make important contributions to the debate.

The first study comes from the laboratory of Shoukhrat Mitalipov at the Oregon Health and Science University. Mitalipov and his team have examined the mitochondrial genomes of iPSCs made from older patients.

Mitochondria are small, vesicles surrounded by two membranes, within cells that are the energy-production structures of most cells (not bacteria). Mitochondria also contain their own DNA molecules that express a variety of mitochondrial-specific genes and their own bacterial-like ribosomes that synthesized the mRNAs made from those genes into proteins. However, the vast majority of mitochondrial proteins are encoded on genes housed in the nucleus.

Mutations in genes encoded by the mitochondrial genome are rather devastating and are responsible for several really nasty (albeit rare) genetic diseases. These mitochondrial genetic diseases include: Mitochondrial myopathy, diabetes and deafness, Leber’s hereditary optic neuropathy (includes visual loss beginning in young adulthood, progressive loss of central vision due to degeneration of the optic nerves and retina), Leigh syndrome subacute sclerosing encephalopathy (disease usually begins late in the first year of life, although onset may occur in adulthood; a rapid decline in function occurs and is marked by seizures, altered states of consciousness, dementia, ventilatory failure), neuropathy, ataxia, retinitis pigmentosa, and ptosis (progressive symptoms as described and dementia), Myoneurogenic gastrointestinal encephalopathy (gastrointestinal pseudo-obstruction and neuropathy), Myoclonic epilepsy with ragged red fibers (progressive myoclonic epilepsy, “Ragged Red Fibers” or clumps of diseased mitochondria accumulate in the muscle fiber, short stature, hearing loss, lactic acidosis, exercise intolerance), mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like symptoms (MELAS).

Mitochondrial DNA mutations have long been thought to be a driving force in aging and age-onset diseases. Therefore, if iPSCs are made from older patients, will their starting cells have these mitochondrial mutations?

Taoseng Huang from Cincinnati Children’s Hospital Medical Center said: “If you want to use iPS cells in a human, you must check for mutations in the mitochondrial genome. Every single cell can be different. Two cells next to each other could have different mutations or different percentages of mutations.”

In this study from Mitalipov’s laboratory, his team derived and sequenced 10 iPS clones from each patient tissue sample to get a better understanding of mitochondrial DNA mutations rates. They took samples of blood and skin samples from healthy subjects and patients with degenerative diseases, who ranged in age from 24-72 years old. In these pools of these sampled cells, the rate of mitochondrial DNA mutations was low.

20 iPS cell lines per patient were profiled. Ten of these lines were derived from skin cells and the other 10 were derived from blood cells. Sequencing of the mitochondrial genomes of the iPSC lines revealed higher numbers of mitochondrial DNA mutations, particularly in cells from patients older than 60 years old. Of the 130 iPSC lines analyzed, 80 percent of them showed mitochondrial mutations and higher percentages of the mitochondria per cell contained mutations.

Such mitochondrial mutations can seriously compromise the ability of derivatives of these iPSC lines to carry out their desired function. Mitalipov in his paper, which was published in Cell Stem Cell, 2016; DOI: 10.1016/j.stem.2016.2016.02.005, that all iPSC lines for use in human patients should be screened for mitochondrial mutations.

Graphical abstract-2

One feature not addressed by Mitalipov and his colleagues is whether or not cells that may not show the signs of aging should be used to derived iPSCs, such as particular bone dormant marrow stem cells.

If mitochondrial mutations aren’t bad enough Jennifer E. Phillips-Cremins and her coworkers at the University of Pennsylvania School of Engineering and Applied Science have found that the chromatin structures of iPSCs might prevent them from properly differentiating into particular derivatives.

As previously mentioned in other blog posts, the DNA in the nuclei of our cells is packaged into a compact structure known as chromatin. Chromatin helps cells express those genes it needs to express and shut down other genes whose expression is not needed.

Occasionally, iPSC lines show an inability to differentiate into particular cell types while others have the ability to differentiate into many cell types. According to this study by Phillips-Cremins and her team, defects in DNA packaging might explain these disparities in iPSC lines.

By using experimental and computational techniques, Phillips-Cremins and her graduate student Jonathan Beagan identified chromatin conformations in a variety of iPSC lines. The DNA topology of embryonic stem cells and neural stem cells were also analyzed as comparisons.

“We know there is a link between the topology of the genome and gene expression,” Jennifer Phillips-Cremins, said in a press release. “So this motivated us to explore how the genetic material is reconfigured in three dimensions inside the nucleus during the reprogramming of mature brain cells to pluripotency. We found evidence for sophisticated configurations that differ in important ways between iPS cells and embryonic stem cells.”

The three-dimensional DNA conformations of pluripotent stem cells are reorganized during differentiation. Phillips-Cremin and others discovered that when mature cells are reprogrammed to pluripotent cells, most pluripotency genes reconnect to their enhancers (which are crucial for their expression). However, when these same iPSCs are differentiated into neural progenitor cells, the interactions between pluripotency gene and their enhancers remain in some lines, which should not occur.

“We found marked differences among the heatmaps we generated for each cell type,” said Jonathan Beagan, a graduate student in Phillips-Cremin’s laboratory at the University of Pennsylvania. “Our observations are important because they suggest that, if we can push the 3D genome conformation of cells that we are turning into IPSCs to be closer to that of embryonic stem cells, then we can possibly generate IPSCs that match gold-standard pluripotent stem cells more rapidly and efficiently.”

This paper was published in Cell Stem Cell (2016), 18(5): 611–624. Therefore, the chromatin structure of iPSCs is also important.

Finally, another paper reports some good news for iPSCs. Research from the Wellcome Trust Sanger Institute tracked the genetic mutations acquired by iPSCs when they are made in the laboratory. These cells came from the blood of a 57-year-old male subject.

This research, led by Allan Bradley, showed that mutations arise 10 times less often in iPSCs than they do in cultured laboratory-grown blood cells. Furthermore, non of the iPSC-acquired mutations were in genes known to cause cancer.

Bradley and his colleagues were able to trace the history of every mutation that each cell acquired from its extraction from the body to its reprogramming in the laboratory and propagation in culture.

The techniques utilized in the Bradley laboratory can surely help scientists evaluate the genetic integrity of laboratory-derived iPSCs.

This work was published in PLOS Genetics, 2016; 12(4): e1005932 DOI: 10.1371/journal.pgen.1005932.

All in all, it seems that it is possible to make sound iPSC lines, but those lines must be properly screened before they can be used in a clinical setting to treat live patients. These three papers provide new ways to screen iPSC lines for ensure high levels of safety and efficacy.

Pluripotent Stem Cells Actively Regulate The Openness of their Heterochromatin


Packaging DNA into a small area like the nucleus of the cell does not occur unless that DNA is tightly wound into compact structures collectively known as chromatin. However, not all regions of the genome show the same degree of compaction. Highly-expressed regions of the genome tend to be less highly compacted and regions of the genes that are not expressed to any degree tend to be squirreled away into tight chromatin.

Pluripotent stem cells tend to have an open and decondensed chromatin organization. In fact, this open and decondensed chromatin configuration is a defining property of pluripotent cells in general. The connection between pluripotency and the is open chromatin organization and the mediators of this chromatin configuration remain shrouded in uncertainty.

A new study from the laboratory of Peter J Rugg-Gunn at the Babraham Institute, in collaboration with scientists from Canada, the United Kingdom, and Japan, has identified two proteins, Nanog and Sall1 that participate in the chromatin structure of pluripotent stem cells. Such an understanding can contribute to making better pluripotent stem cells.

Cells tend to possess regions of the genome that are tightly wrapped into tight heterochomatin. These genomic regions are usually structural in nature and are, typically, not expressed. These include centromeric DNA and pericentromeric DNA, which plays a role in spindle attachment during cell division. These regions are collectively known as “constitutive heterochromatin.” However, previous research has demonstrated that this constitutive heterchromatin is maintained in an open and uncompacted conformation.

Clara Lopes Novo, in Rugg-Gunn’s laboratory and her colleagues discovered that transcription factor NANOG acts as an integral regulator of the conformation of constitutive heterochromatin in mouse embryonic stem cells. When Lopes Novo and others deleted the Nanog genes in mouse embryonic stem cells, the constitutive heterochromatin was remodeled in a manner that led to more intensive chromatin compaction. However, when Lopes Novo and her coworkers forced the expression of the Nanog gene in mouse embryonic stem cells, leading to spikes in the levels of NANOG proteim, the heterochromatin domains showed distinct decompaction.

When Lopes Novo and others determined where NANOG spent its time, they discovered that it was bound to heterochromatin. In particular, NANOG associated with satellite repeats within heterochromatin domains. Heterochromatin that was associated with NANOG had highly dispersed chromatin fibers, low levels of modified histone proteins that are usually associated with chromatin compaction (i.e. H3K9me3), and high levels of transcription.

The second heterochromatin-associated protein, SALL1, seems to work in cahoots with NANOG. In fact, when Lopes Novo and others deleted the Sall1 gene from mouse embryonic stem cells, the Sall1-/- cells recapitulate the Nanog -/- phenotype. However, further work showed that the loss of Sall1 can be rescued by forcing the recruitment of the NANOG to major portions of the heterochromatin (by over-expressing the NANOG protein).

These results demonstrate the connection between pluripotency and chromatin organization. This work seems to say, “embryonic stem cells actively maintain an open heterochromatin architecture.” They do this to stabilize their pluritotency.

Loss of heterochromatin regulation has potential consequences for the long-term genetic stability of stem cells, and the ability of stem cells, and the ability of stem cells to differentiate and mature into specialized cell types.

This work was published in the journal Genes and Development (http://www.genesdev.org/cgi/doi/10.1101/gad.275685.115)

Stem Cells that Control Skin and Hair Color


A research team at NYU Langone Medical Center has uncovered a pair of molecular signals that control the hair and skin color in mice and humans. Manipulation of these very signals may lead to therapies or even drugs to treat skin pigment disorders, such as vitiligo.

Vitiligo
Vitiligo

Vitiligo is somewhat disfiguring condition characterized by the loss of skin pigmentation, leaving a blotchy, white appearance. Finding ways to activate these two signaling pathways may provide clinicians with the means to mobilize the pigment-synthesizing stem cells that place pigment in skin structures and, potentially, repigment the pigment-bearing structures that were damaged in cases of vitiligo. Such treatment might also repigment grayed hair cells in older people, and even correct the discoloration that affects scars.

Workers in the laboratory of Mayumi Ito at the Ronald O. Perelman Department of Dermatology and the Department of Cell Biology showed that a skin-based stem cell population of pigment-producing cells, known as “melanocytes,” grow and regenerate in response to two molecular signals. The Endothelin receptor type B (EdnrB) protein is found on the surfaces of melanocytes. EdnrB signaling promotes the growth and differentiation of melanocyte stem cells (McSCs). Activation of EdnrB greatly enhances the regeneration of hair-based and epidermal-based melanocytes. However, EdnrB does act alone. Instead, the effect of EdnrB depends upon active Wnt signaling. This Wnt signal is initiated by the secretion of Wnt glycoproteins by the hair follicle cells.

This work was published in Cell Reports, April 2016 DOI: http://dx.doi.org/10.1016/j.celrep.2016.04.006.

Previous work on EdnrB has established that it plays a central role in blood vessel development. This work by Ito and his team is the first indication that pigment-producing melanocytes, which provide color to hair and skin, are controlled by this protein.

A lack of EdnrB signaling in mice caused premature graying of the hair. However, stimulating the EdnrB pathway resulted in a 15-fold increase in melanocyte stem cell pigment production, and by two months, the mice showed hyperpigmentation. In fact, wounded skin in these mice became pigmented upon healing.

Overexpression of Edn1 Promotes Upward Migration of McSCs and Generation of Epidermal Melanocytes following Wounding (A–D) Whole-mount image of X - gal - stained wound area of Dct-LacZ (control; A and B) and Tyr-CreER ; EdnrB fl/fl ; Dct-lacZ (C and D) at indicated days after re-epithelialization. (E–J) Double immunohistochemical staining of Dct and Ki67 in the bulge (E and H), upper hair follicle (F and I), and inter-follicular epidermis (G and J ) in control (E–G) and K14-rtTA ; TetO-Edn1-LacZ (Edn1; H–J) mice. (K–N) Whole - mount analyses of wound site (K and L) and de novo hair follicles (M and N) within wound site from control (K and M) and Edn1 mice (L and N) at 8 days after re-epithelialization. (O–R) Quantification of the number of Dct - LacZ+ cells in wound site (O), the percentage of Ki67+/Dct+ cells (P), the number of pigmented cells in wound site (Q), and the percentage of pigmented de novo hair (R), respectively. Dashed lines indicate periphery of wound site in (A) and (D) and boundary between epidermis and dermis in (E)–(J). Arrowheads show Dct - LacZ + cells in wound area in (A)–(D) and Ki67+/Dct+ cells (H)–(J). IFE, inter-follicular epidermis; UF, upper follicle. Data are presented as the mean ± SD. *p < 0.01; **p < 0.02; ***p < 0.05. The scale bar represents 1 mm in (A), 50 m m in (E), 200 m m in (K) and (L), and 100 m m in (M) and (N).
Overexpression of Edn1 Promotes Upward Migration of McSCs and Generation of Epidermal Melanocytes following Wounding (A–D) Whole-mount image of X-gal – stained wound area of
Dct-LacZ (control; A and B) and Tyr-CreER; EdnrB fl/fl; Dct-lacZ (C and D) at indicated days after
re-epithelialization. (E–J) Double immunohistochemical staining of Dct and Ki67 in the bulge (E and H), upper hair follicle (F and I), and inter-follicular epidermis (G and J) in control (E–G) and K14-rtTA;
TetO-Edn1-LacZ (Edn1; H–J) mice.  (K–N) Whole-mount analyses of wound site (K and L) and de novo hair follicles (M and N) within wound site from control (K and M) and Edn1 mice (L and N) at
8 days after re-epithelialization.  (O–R) Quantification of the number of Dct-LacZ+ cells in wound site (O), the percentage of Ki67+/Dct+ cells (P), the number of pigmented cells in wound site (Q),
and the percentage of pigmented de novo hair (R), respectively.  Dashed lines indicate periphery of wound site in (A) and (D) and boundary between epidermis and dermis in (E)–(J). Arrowheads show Dct-LacZ+ cells in wound area in (A)–(D) and Ki67+/Dct+ cells (H)–(J). IFE, inter-follicular epidermis; UF, upper follicle. Data are presented as the mean ± SD. *p < 0.01; **p < 0.02; ***p < 0.05.
The scale bar represents 1 mm in (A), 50 micrometer in (E), 200 micrometer in (K) and (L), and 100
micrometer in (M) and (N).

If the Wnt signaling pathway was blocked, stem cell growth and maturation sputtered and stalled and never got going, even when the EdnrB pathway was working properly. These mice had unpigmented fur (see E in figure below).

Loss of beta-catenin Function Suppresses Edn1-Mediated Effects on McSC Proliferation, Differentiation, and Upward Migration (A) Experimental scheme for treatment of Tyr-CreER ; b -catenin fl/fl ; K14-rtTA ; TetO-Edn1-LacZ ( b -cat cKO; Edn1 ) mice and control K14-rtTA ; TetO-Edn1- LacZ ( Edn1 ) mice. (B–E) Gross appearance of Edn1 (B and D) and b -cat cKO; Edn1 mice (C and E) at second (B and C) and third telogen (D and E). (F–K) Immunohistochemistry for indicated markers (F, G, I, and J) and bright- field image (H and K) of bulge/sHG region in skin sections from Edn1 mice (F–H) and b -cat cKO; Edn1 mice (I–K) at anagen II. (L–Q) Bright-field image (L–N) and Dct immunostaining of whole-mount wound site (O–Q) from Tyr-CreER ; b -catenin fl/fl ( b -cat cKO; L and O), Edn1 (M and P), and b -cat cKO; Edn1 mice (N and Q). (R and S) Quantification of the percentage of Dct+ cells positive for Ki67, Tyr, and pigmentation (R) and the number of Dct+ cells in wounded site (S). Dashed lines indicate border between hair follicle and dermis. Arrow- heads indicate double positive cells for indicated markers (F and G) and pigmented cells (H). Data are presented as the mean ± SD.*p<0.05;**p< 0.02; ***p < 0.001. The scale bar represents 1 cm in (B)–(E), 10 m min(F), and 200 m min(L). 1
Loss of beta-catenin Function Suppresses Edn1-Mediated Effects on McSC Proliferation, Differentiation, and Upward Migration
(A) Experimental scheme for treatment of
Tyr-CreER; beta-catenin fl/fl; K14-rtTA; TetO-Edn1-LacZ (beta-cat cKO; Edn1) mice and control K14-rtTA; TetO-Edn1-LacZ (Edn1) mice.
(B–E) Gross appearance of Edn1 (B and D) and
beta-cat cKO; Edn1 mice (C and E) at second (B and C) and third telogen (D and E). (F–K) Immunohistochemistry for indicated markers (F, G, I, and J) and bright-field image (H and K) of bulge/sHG region in skin sections from Edn1 mice (F–H) and beta-cat cKO; Edn1
mice (I–K) at anagen II. (L–Q) Bright-field image (L–N) and Dct immunostaining of whole-mount wound site (O–Q) from
Tyr-CreER; beta-catenin fl/fl (beta-cat cKO; L and O), Edn1 (M and P), and beta-cat cKO; Edn1 mice (N and Q). (R and S) Quantification of the percentage of Dct+ cells positive for Ki67, Tyr, and pigmentation (R) and the number of Dct+ cells in wounded site (S).
Dashed lines indicate border between hair follicle and dermis. Arrow-heads indicate double positive cells for indicated markers (F and G) and pigmented cells (H). Data are presented as the mean ± SD.*p<0.05;**p<
0.02; ***p < 0.001. The scale bar represents 1 cm in (B)–(E), 10 micrometers in (F), and 200 micrometer  in (L).

However, perhaps the most exciting finding for Ito and his colleagues was that Wnt-dependent, EdnrB signaling rescued the defects in melanocyte regeneration caused by loss of the Mc1R receptor. This is precisely the receptor that does not function properly in red-heads, which causes them to have red hair and very light skin that burns easily in the sun. These data suggest that Edn/EdnrB/Wnt signaling in McSCs can be used therapeutically to promote photoprotective-melanocyte regeneration in those patients with increased risk of skin cancers due to their very lightly colored skin.

Melanocyte Stem Cell Modeld

How Skeletal Stem Cells form the Blueprint of the Face


A new study from the laboratory of University of Southern California (USC) Stem Cell researcher J Gage Crump, who is at the Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, has identified the key molecular signals that control the critical timing of the development of the vertebrate face.

Previous work has demonstrated that two molecular signals, in particular the JaggedNotch and Endothelin 1 signaling, are integral for shaping the face. Loss of either of these signals results in facial deformities in zebrafish and humans. This illustrates the essential contribution these signaling pathways make to the development of the face.

Lindsey Barske, a researcher in Crump’s laboratory and her colleagues utilized sophisticated genetic, genomic, and imaging tools to study face formation in zebrafish and showed that the Jagged-Notch and Endothelin 1 pathways work in tandem to control when and where the facial stem cells form face-specific cartilage.

In the lower part of the face, the Endothelin 1 signal accelerates cartilage formation early in development, but in the upper face, the Jagged-Notch signal transduction pathway produces signals that prevent stem cells from making cartilage until later in development.

Barske and her colleagues discovered that these timing differences in facial stem cell activity and facial cartilage production play a major role in making the upper and lower cartilage regions of the face.

The earliest blueprint of the facial skeleton is established by intersecting signals that control when stem cells transform cartilage into bone. It also appears that small tweaks to the timing of these events accounts for the different skull shapes observed in vertebrate animals. Also, small, nuanced changes in facial cartilage production and ossification can also account for the diverse array of facial shapes observed in humans.

This work was published in PLOS Genetics 12(4): e1005967. doi:10.1371/journal.pgen.1005967.

Hematopoietic Stem Cells Use a Simple Heirarchy


New papers in Science magazine and the journal Cell have addressed a long-standing question of how the descendants of hematopoietic stem cells in bone marrow make the various types of blood cells that course through our blood vessels and occupy our lymph nodes and lymphatic vessels.

Hematopoietic stem cells (HSCs) are partly dormant cells that self-renew and produce so-called “multipotent progenitors” or MPPs that have reduced ability to self-renew, but can differentiate into different blood cell lineages.

The classical model of how they do this goes like this: the MPPs lose their multipotency in a step-wise fashion, producing first, common myeloid progenitors (CMPs) that can form all the red and white blood cells except lymphocytes, or common lymphoid progenitors (CLPs) that can form lymphocytes (see the figure below as a reference). Once these MPPs form CMPs, for example, the CMP then forms either an MEP that can form either platelets or red blood cells, or a GMP. which can form either granulocytes or macrophages. The possibilities of the types of cells the CMP can form in whittled down in a step-by-step manner, until there is only one choice left. With each differentiation step, the cell loses its capacity to divide, until it becomes terminally differentiated and becomes platelet-forming megakarocyte, red blood cell, neutrophil, macrophage, dendritic cells, and so on.

hematopoiesis-from-multipotent-stem-cell

These papers challenge this model by arguing that the CMP does not exist. Let me say that again – the CMP, a cell that has been identified several times in mouse and human bone marrow isolates, does not exist. When CMPs were identified from mouse and human none marrow extracts, they were isolated by means of flow cytometry, which is a very powerful technique, but relies on the assumption that the cell type you want to isolate is represented by the cell surface protein you have chosen to use for its isolation. Once the presumptive CMP was isolated, it could recapitulate the myeloid lineage when implanted into the bone marrow of laboratory animals and it could also produce all the myeloid cells in cell culture. Sounds convincing doesn’t it?

In a paper in Science magazine, Faiyaz Notta and colleagues from the University of Toronto beg to differ. By using a battery of antibodies to particular cell surface molecules, Notta and others identified 11 different cell types from umbilical cord blood, bone marrow, and human fetal liver that isolates that would have traditionally been called the CMP. It turns out that the original CMP isolate was a highly heterogeneous mixture of different cell types that were all descended from the HSC, but had different developmental potencies.

Notta and others used single-cell culture assays to determine what kinds of cells these different cell types would make. Almost 3000 single-cell cultures later, it was clear that the majority of the cultured cells were unipotent (could differentiate into only one cell type) rather than multipotent. In fact, the cell that makes platelets, the megakarocyte, seems to derive directly from the MPP, which jives with the identification of megakarocyte progenitors within the HSC compartment of bone marrow that make platelets “speedy quick” in response to stress (see R. Yamamoto et al., Cell 154, 1112 (2013); S. Haas, Cell Stem Cell 17, 422 (2015)).

Another paper in the journal Cell by Paul and others from the Weizmann Institute of Science, Rehovot, Israel examined over 2700 mouse CMPs and subjected these cells to gene expression analyses (so-called single-cell transriptome analysis). If the CMP is truly multipotent, then you would expect it to express genes associated with lots of different lineages, but that is not what Paul and others found. Instead, their examination of 3461 genes revealed 19 different progenitor subpopulations, and each of these was primed toward one of the seven myeloid cell fates. Once again, the presumptive CMPs looked very unipotent at the level of gene expression.

One particular subpopulation of cells had all the trappings of becoming a red blood cell and there was no indication that these cells expressed any of the megakarocyte-specific genes you would expect to find if MEPS truly existed. Once again, it looks as though unipotency is the main rule once the MPP commits to a particular cell lineage.

Thus, it looks as though either the CMP is a very short-lived state or that it does not exist in mouse and human bone marrow. Paul and others did show that cells that could differentiate into more than one cell type can appear when regulation is perturbed, which suggests that under pathological conditions, this system has a degree of plasticity that allows the body to compensate for losses of particular cell lineages.

A model of the changes in human My-Er-Mk differentiation that occur across developmental time points. Graphical depiction of My-Er-Mk cell differentiation that encompasses the predominant lineage potential of progenitor subsets; the standard model is shown for comparison. The redefined model proposes a developmental shift in the progenitor cell architecture from the fetus, where many stem and progenitor cell types are multipotent, to the adult, where the stem cell compartment is multipotent but the progenitors are unipotent. The grayed planes represent theoretical tiers of differentiation.
A model of the changes in human My-Er-Mk differentiation that occur across developmental time points.
Graphical depiction of My-Er-Mk cell differentiation that encompasses the predominant lineage potential of progenitor subsets; the standard model is shown for comparison. The redefined model proposes a developmental shift in the progenitor cell architecture from the fetus, where many stem and progenitor cell types are multipotent, to the adult, where the stem cell compartment is multipotent but the progenitors are unipotent. The grayed planes represent theoretical tiers of differentiation.

Fetal HSCs, however, are a bird of a different feather, since they divide quickly and reside in fetal liver.  Also, these HSCs seem to produce CMPs, which is more in line with the classical model.  Does the environmental difference or fetal liver and bone marrow make the difference?  In adult bone marrow, some HSCs nestle next to blood vessels where they encounter cells that hang around blood vessels known as “pericytes.”  These pericytes sport a host of cell surface molecules that affect the proliferative status of HSCs (e.g., nestin, NG2).  What about fetal liver?  That’s not so clear – until now.

In the same issue of Science magazine, Khan and others from the Albert Einstein College of Medicine in the Bronx, New York, report that fetal liver also has pericytes that express the same cell surface molecules as the ones in bone marrow, and the removal of these cells reduces the numbers of and proliferative status of fetal liver HSCs.

Now we have a conundrum, because the same cells in bone marrow do not drive HSC proliferation, but instead drive HSC quiescence.  What gives? Khan and others showed that the fetal liver pericytes are part of an expanding and constantly remodeling blood system in the liver and this growing, dynamic environment fosters a proliferative behavior in the fetal HSCs.

When umbilical inlet is closed at birth, the liver pericytes stop expressing Nestin and NG2, which drives the HSCs from the fetal liver to the other place were such molecules are found in abundance – the bone marrow.

These models give us a better view of the inner workings of HSC differentiation.  Since HSC transplantation is one of the mainstays of leukemia and lymphoma treatment, understanding HSC biology more perfectly will certainly yield clinical pay dirt in the future.