Patient-Specific Stem Cells Plus Personalized Gene Therapy for Blindness


Researchers from Columbia University Medical Center (CUMC) have devised protocols to develop personalized gene therapies for patients with an eye known as retinitis pigmentosa (RP), which is a leading cause of vision loss. While RP can begin during infancy, the first symptoms typically emerge during early adulthood. Typically the disease begins with night blindness, and RP eventually progresses to rob the patients of their peripheral vision. In its later stages, RP destroys photoreceptors in the macula, that region of the retina that provides the best vision under lighted conditions. RP is estimated to affect at least 75,000 people in the United States and 1.5 million worldwide.

The approach utilized by this Columbia team utilizes induced pluripotent stem (iPS) cell technology to transform patient’s skin cells into retinal cells, which are then used as a patient-specific model for disease study and preclinical testing.

The leader of this research group, Stephen H. Tsang, MD, PhD, showed that a form of RP caused by mutations to the MFRP gene compromised the structural integrity of the retinal cells. The MFRP gene encodes a protein called the Membrane Frizzled-Related Protein, which plays an important role in eye development. Mutations in the MFRP gene are associated with small eye conditions such as nanophthalmos, posterior microphthalmia, or retinal issues such as retinitis pigmentosa, foveoschisis, or even optic disc drusen. Tsang and his group, however, showed that the effects of these MFRP mutations could be reversed with gene therapy. Thus this new approach could potentially be used to create personalized therapies for other forms of RP, or even other genetic diseases.

“The use of patient-specific cell lines for testing the efficacy of gene therapy to precisely correct a patient’s genetic deficiency provides yet another tool for advancing the field of personalized medicine,” said Dr. Tsang, the Laszlo Z. Bito Associate Professor of Ophthalmology and associate professor of pathology and cell biology. This work was recently published in the online edition of Molecular Therapy, the official journal of the American Society for Gene & Cell Therapy.

Mutations in more than 60 different genes have been linked to RP. Such a genetic disease is known as a heterogeneous trait and genetic diseases like RP or deafness or other such conditions are very difficult to develop models to study. Animal models, though useful, have significant limitations because of interspecies differences. Eye researchers have also used human retinal cells from eye banks to study RP. This eye tissue comes from the eyes of patients who suffered from the disease and donated their eye tissue to research after death. Unfortunately, despite their usefulness, donated eye tissues typically illustrate the end stage of the disease process. Despite their usefulness, they reveal little about how RP develops. Also, there are no human tissue culture models of RP, since it is dangerous to harvest retinal cells from patients. Finally, human embryonic stem cells could be useful in RP research, but they are fraught with ethical, legal, and technical issues.

However, the Tsang group used iPS technology to transform skin cells from RP patients, each of whom harbored a different MFRP mutation, into retinal cells. Thus they created patient-specific models for studying the disease and testing potential therapies. Because they used iPS technology, Tsang found a way around the limitations and concerns and dog embryonic stem cells. Thus researchers can induce the patient’s own skin cells and de-differentiated them to a more basic, embryonic stem cell–like state. Such cells are “pluripotent,” which means that they can be transformed into specialized cells of various types.

When Tsang and others analyzed these patient-specific cells, they discovered that the primary effect of MFRP mutations is to disrupt the regulation of a cytoskeletal protein called actin, the scaffolding that gives the cell its structural integrity. “Normally, the cytoskeleton looks like a series of connected hexagons,” said Dr. Tsang. “If a cell loses this structure, it loses its ability to function.” They also found that MFRP works in tandem with another gene, CTRP5, and that a balance between the two genes is required for normal actin regulation.

In the next phase of the study, the CUMC team used adeno-associated viruses (AAVs) to introduce normal copies of MFRP into the iPS-derived retinal cells. This successfully restored the cells’ function. Tsang and others used gene therapy to “rescue” mice with RP due to MFRP mutations. According to Dr. Tsang, the mice showed long-term improvement in visual function and restoration of photoreceptor numbers.

“This study provides both in vitro and in vivo evidence that vision loss caused by MFRP mutations could potentially be treated through AAV gene therapy,” said coauthor Dieter Egli, PhD, an assistant professor of developmental cell biology (in pediatrics) at CUMC, who is also affiliated with the New York Stem Cell Foundation.

Dr. Tsang thinks this approach could potentially be used to study other forms of RP. “Through genome-sequencing studies, hundreds of novel genetic spelling mistakes have been associated with RP,” he said. “But until now, we’ve had very few ways to find out whether these actually cause the disease. In principle, iPS cells can help us determine whether these genes do, in fact, cause RP, understand their function, and, ultimately, develop personalized treatments.”

A New Way to Regrow Human Corneas


My apologies to my readers, but I was at the Free Methodist Bible Quizzing Finals at Greenville College in Illinois for the last week. I am recovering and have only the energy to write a short post for today.

The cornea is the transparent covering of the eye that transmits light from the environment to the inside of the eye, to the photoreceptor-rich retina that interprets the light information and translates them into neural signals that are sent to the visual centers of the brain.

The cornea is subject to constant wear and tear, but fortunately, a stem cell population called limbal stem cells. These stem cells constantly regenerate the cornea, and the conjunctiva, which is otherwise known as the “whites of the eye.”

Limbal stem cells

 

Unfortunately, the limbal stem cells can be damaged by chemicals, sparks from a welding, genetically inherited conditions, or physical trauma. Such conditions can prevent proper replacement of constantly sloughed cornea and conjunctival cells. This can seriously compromise the structural integrity and function la of the eye.

To treat patients with corneal limbal stem defects, eye surgeons have transplanted limbal cells from cadavers or used small excisions of limbal cell populations from the unaffected eye and transplanted them into the affected eye. These so-called “autologous limbal cell transplants” tend to work quite well, but there are two cuts that need to be made. Is there are way to expand limbal stem cells for clinical use? Now it appears that there is.

Scientists from the Massachusetts Eye and Ear Infirmary have used sophisticated key tracer molecules to pin down the precise cells in the eye that are capable of regeneration and repair. They then transplanted these regenerative stem cells into mice to create fully functioning corneas.

This work was published in the international journal Nature, and they predict that this method may one day help restore the sight of victims of burns and chemical injuries.

Limbal stem cells (LSC) completely renew our corneas every few weeks and repair the cornea and conjunctiva whenever they are injured. Without LSCs the cornea becomes cloudy, which severely disrupts vision. In fact, LSC deficiencies are among the commonest reasons behind blindness worldwide.

Unfortunately, the LSC population is embedded in a part of the eye where they share space with a matrix of other structures in the limbal part of the eye (FYI – the limbus is the junction between the cornea and the white of the eye).

Enter the work from the Massachusetts Eye and Ear Infirmary in Boston at the Boston Children’s Hospital, Brigham and Women’s Hospital and in collaboration with the VA Boston Healthcare System have identified a key molecule known as ABCB5, which is naturally present on the surface of LSCs.

Although ABCB5 has been known about for some time in other parts of the body, this is the first time ABCB5 has been identified on the surfaces of LSCs. Also, it is clear that ABCB5 can effectively mark LSCs.

By using molecules linked to fluorescent molecules, these scientists were able to instantly identify a pool of LSCs on donated human corneas. After transplanting these cells into the eyes of mice, they discovered that the transplanted cells were able to generate fully functioning human corneas.

Prof Markus Frank, of Boston Children’s Hospital, a lead author in the research, told the BBC: ” The main significance for human disease is we have established a molecularly defined population of cells that we can extract from donor tissue.

“And these cells have the remarkable ability to self-regenerate. We hope to drive this research forward so this can be used as a therapy.”

Harminder Dua, professor of ophthalmology at the University of Nottingham, who was not involved in this study, said: “This paper represents a very comprehensive and well conducted piece of work that takes use closer to the precise identification of stem cells.

“Applying this knowledge to a clinical setting could help improve the outcomes for patients who need corneal reconstruction.”

Vascular Progenitors Made from Induced Pluripotent Stem Cells Repair Blood Vessels in the Eye Regardless of the Site of Injection


Johns Hopkins University medical researchers have reported the derivation of human induced-pluripotent stem cells (iPSCs) that can repair damaged retinal vascular tissue in mice. These stem cells, which were derived from human umbilical cord-blood cells and reprogrammed into an embryonic-like state, were derived without the conventional use of viruses, which can damage genes and initiate cancers. This safer method of growing the cells has drawn increased support among scientists, they say, and paves the way for a stem cell bank of cord-blood derived iPSCs to advance regenerative medical research.

In a report published Jan. 20 in the journal Circulation, Johns Hopkins University stem cell biologist Elias Zambidis and his colleagues described laboratory experiments with these non-viral, human retinal iPSCs, that were created generated using the virus-free method Zambidis first reported in 2011.

“We began with stem cells taken from cord-blood, which have fewer acquired mutations and little, if any, epigenetic memory, which cells accumulate as time goes on,” says Zambidis, associate professor of oncology and pediatrics at the Johns Hopkins Institute for Cell Engineering and the Kimmel Cancer Center. The scientists converted these cells to a status last experienced when they were part of six-day-old embryos.

Instead of using viruses to deliver a gene package to the cells to turn on processes that convert the cells back to stem cell states, Zambidis and his team used plasmids, which are rings of DNA that replicate briefly inside cells and then are degraded and disappear.

Next, the scientists identified and isolated high-quality, multipotent, vascular stem cells that resulted from the differentiation of these iPSC that can differentiate into the types of blood vessel-rich tissues that can repair retinas and other human tissues as well. They identified these cells by looking for cell surface proteins called CD31 and CD146. Zambidis says that they were able to create twice as many well-functioning vascular stem cells as compared with iPSCs made with other methods, and, “more importantly these cells engrafted and integrated into functioning blood vessels in damaged mouse retina.”

Working with Gerard Lutty, Ph.D., and his team at Johns Hopkins’ Wilmer Eye Institute, Zambidis’ team injected these newly iPSC-derived vascular progenitors into mice with damaged retinas (the light-sensitive part of the eyeball). The cells were injected into the eye, the sinus cavity near the eye or into a tail vein. When Zamdibis and his colleagues took images of the mouse retinas, they found that the iPSC-derived vascular progenitors, regardless of injection location, engrafted and repaired blood vessel structures in the retina.

“The blood vessels enlarged like a balloon in each of the locations where the iPSCs engrafted,” says Zambidis. Their vascular progenitors made from cord blood-derived iPSCs compared very well with the ability of vascular progenitors derived from fibroblast-derived iPSCs to repair retinal damage.

Zambidis says that he has plans to conduct additional experiments in diabetic rats, whose conditions more closely resemble human vascular damage to the retina than the mouse model used for the current study, he says.

With mounting requests from other laboratories, Zambidis says he frequently shares his cord blood-derived iPSC with other scientists. “The popular belief that iPSCs therapies need to be specific to individual patients may not be the case,” says Zambidis. He points to recent success of partially matched bone marrow transplants in humans, shown to be as effective as fully matched transplants.

“Support is growing for building a large bank of iPSCs that scientists around the world can access,” says Zambidis, although large resources and intense quality-control would be needed for such a feat. However, Japanese scientists led by stem-cell pioneer Shinya Yamanaka are doing exactly that, he says, creating a bank of stem cells derived from cord-blood samples from Japanese blood banks.

Treating Age-Related Blindness with a Stem Cell Replacement Method


A collaboration between German and American scientists in New York City has resulted in the invention of a new method for transplanting stem cells into the eyes of patients who suffer from age-related macular degeneration, which is the most frequent cause of blindness. In an animal test, the implanted stem cells survived in the eyes of rabbits for several weeks.

Approximately 4.5 millino people in Germany suffer from age-related macular degeneration (AMD), which causes gradual loss of visual acuity and affects the ability to read, drive a car or do fine work. The center of the vision field becomes blurry as though covered by a veil. This vision loss is a consequence of the death of cells in the retinal pigment epithelium or RPE, which lies are the back of the eye, underneath the neural retina.

Inflammation within the RPE causes AMD. Increased inflammation prevents efficient recycling of metabolic waste products, and the build-up of toxic wastes causes RPE die off. Without the RPE, the photoreceptors in front of the RPE cells that also depend on the RPE to repair the damage suffered from continuous light exposure, begin to die off too.

RPE

Retinal Pigmented Epithelium

Presently no cure exists for AMD, but scientists at Bonn University, in the Department of Ophthalmology and New York City have tested a new procedure that replaces damaged RPE cells.

In the present experiment, RPE cells made from human stem cells were successfully implanted into the retinas of rabbits.

Boris V. Stanzel, the lead author of this work, said, “These cells have now been used for the first time in research for transplantation purposes.”

The adult RPE stem cells were characterized by Timothy Blenkinsop and his colleagues at the Neural Stem Cell Institute in New York City. Blenkinsop designed methods to isolate and grow these cells. He also flew to Germany to assist Dr. Stanzel with the transplantation experiments.  Blenkinsop obtained his RPE cells from human cadavers, and he grew them on polyester matrices.

These experiments demonstrate that RPE cells obtained from adult stem cells can replace cells destroyed by AMD. This newly developed transplantation method makes it possible to test which stem cells lines are most suitable for transplantation into the eye.

Radio Interview About my New Book


I was interviewed by the campus radio station (89.3 The Message) about my recently published book, The Stem Cell Epistles,

Stem Cell Epistles

It has been archived here. Enjoy.

An Easy Way to Make Retinal Pigment Epithelium from Pluripotent Stem Cells


Age-related macular degeneration is the leading cause of irreversible vision loss and blindness among the aged in industrialized countries. One of the earliest events associated with age-related macular degeneration (AMD) is damage to the retinal pigmented epithelium (RPE), which lies just behind the photoreceptor cells in the retinal. The RPE serves several roles in visual function, including absorption of stray light, formation of blood retina barrier, transport of nutrients, secretion of growth factors, isomerization of retinol, and daily clearance of shed outer photoreceptor outer segments. RPE cell death and dysfunction is associated with both wet (neovascular) and dry (atrophic) forms of AMD.

How then do we make RPE cells from stem cells in order to treat AMD? In previous experiments, scientists have used RPEs made from human embryonic stem cells to treat two patients with inherited eye diseases. The results from these experiments were underwhelming to say the least. Also, the derivation of RPEs from embryonic stem cells was tedious and laborious. Is there a better way?

Make that a yes. A paper in Stem Cells Translational Medicine from Donald Zack’s laboratory at Johns Hopkins University School of Medicine describes a simple and highly scalable process for deriving RPEs from human pluripotent stem cells.

To begin with, the cells were plated at relatively high densities (20,000 cells / cm square centimeter) in a medium called TeSR1. This medium can support the growth of human pluripotent stem cells and can also keep them undifferentiated without the use of animal feeder cell lines. SInce there are no feeder cells to make, the cultivation of these cells is much simpler than before and the variability from culture to culture decreases.

After five days of growth, the cells grew to a monolayer (the cells had grown and spread throughout the culture dish) and were transferred to a 5% carbon dioxide and 20% oxygen incubator. Three days later, they were transferred to Delbecco’s Modified Eagle Medium with F12 supplement or DMEM/F12. This culture medium supports stem cell differentiation. The cells grew and differentiated, for about 25 days, but RPEs were easily visible because they make loads of dark pigment. Once the dark colonies appeared, the cells were allowed to grow another 25 days. The cells were transferred into Delbecco’s Medium with enzymes to pull the cells apart from each other for four hours, then, after pipetting them vigorously, the cells were centrifuged, and suspended in a cell detachment solution called Accumax.

The separated cells were filtered and plated on specially coated plates, and cultured in “RPE medium.” This is a mixture of several different culture media that favors the survival and growth of RPEs. Because RPE colonies were easily seen with their dark pigments, they were specifically picked and passaged. The result was extremely clean RPE cultures from pluripotent stem cells.

Differentiation of hPSCs into RPE. (A): Schematic view of the differentiation process. (B): Kinetics of marker expression of differentiating hESCs and hiPSCs as measured by quantitative real-time polymerase chain reaction. d1 denotes the time at which the cells were transferred to DM. Error bars represent standard deviation of biological replicates. (C): Morphology of hPSCs after 50 days in DM, with arrowheads indicating representative pigmented colonies. Scale bar = 5 mm. (D, E): Flow cytometric analysis of the expression of RPE65 by differentiating hPSCs after 50 days in DM. The profile of cells stained with the anti-RPE65 antibody is shown in red, and the isotype control is displayed in black. Only a minority of cells were RPE65-positive, which is in accordance with the limited number of pigmented colonies obtained in (C). Abbreviations: d, day of the experiment; DM, differentiation medium; hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem cell; hPSC, human pluripotent stem cell; P1, first passage; P2, second passage; RPE, retinal pigment epithelium; w, week.
Differentiation of hPSCs into RPE. (A): Schematic view of the differentiation process. (B): Kinetics of marker expression of differentiating hESCs and hiPSCs as measured by quantitative real-time polymerase chain reaction. d1 denotes the time at which the cells were transferred to DM. Error bars represent standard deviation of biological replicates. (C): Morphology of hPSCs after 50 days in DM, with arrowheads indicating representative pigmented colonies. Scale bar = 5 mm. (D, E): Flow cytometric analysis of the expression of RPE65 by differentiating hPSCs after 50 days in DM. The profile of cells stained with the anti-RPE65 antibody is shown in red, and the isotype control is displayed in black. Only a minority of cells were RPE65-positive, which is in accordance with the limited number of pigmented colonies obtained in (C). Abbreviations: d, day of the experiment; DM, differentiation medium; hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem cell; hPSC, human pluripotent stem cell; P1, first passage; P2, second passage; RPE, retinal pigment epithelium; w, week.

The cells were subjected to a battery of tests: flow cytometry, Western blotting, Immunostaining and so on. These cells passed with flying colors and they are clearly RPE cells that express RPE-specific genes, have RPE-specific proteins on their cell surfaces, and even snuggle up to photoreceptors and recycle their terminal segments.  The final functional test came from a transplantation experiment in which human RPEs made from human pluripotent stem cells were transplanted behind the retinas of mice with impaired immune systems.  The cells, as you can see in the figures below, integrated beautifully, and were also highly functional, as indicated by the rhodopsin-positive vesicles in the implanted RPE cells.   No tumors were seen in any of the laboratory animals implanted with the stem cell-derived RPEs.

Transplantation of human pluripotent stem cell (hPSC)-RPE cells into the subretinal space of albinos NOD-scid mice. (A): Fundus photograph of an injected eye, 1 week post-transplantation. Note the numerous pigmented clusters formed by the transplanted hPSC-RPE cells. (B): Confocal micrograph showing the presence of rhodopsin-positive material (yellow arrows) within the cell membrane of carboxyfluorescein diacetate succinimidyl ester-labeled hPSC-RPE cells, 1 week after subretinal injection. Scale bars = 10 μm. Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; ONL, outer nuclear layer; OS, outer segment; RPE, retinal pigment epithelium.
Transplantation of human pluripotent stem cell (hPSC)-RPE cells into the subretinal space of albinos NOD-scid mice. (A): Fundus photograph of an injected eye, 1 week post-transplantation. Note the numerous pigmented clusters formed by the transplanted hPSC-RPE cells. (B): Confocal micrograph showing the presence of rhodopsin-positive material (yellow arrows) within the cell membrane of carboxyfluorescein diacetate succinimidyl ester-labeled hPSC-RPE cells, 1 week after subretinal injection. Scale bars = 10 μm. Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; ONL, outer nuclear layer; OS, outer segment; RPE, retinal pigment epithelium.

This new procedure is able to make RPEs from pluripotent stem cells in a simple and highly scalable way.  If human induced pluripotent stem cells could be used with this protocol, and there seems little reason that should not be highly possible, then such cells could be easily used for human clinical trials.

Treating Diabetic Retinopathy with Stem Cells


Scientists at Queen’s University Belfast hope to design a new approach for treating the eyesight of diabetic patients by using adult stem cells.

Millions of diabetics every year are at risk for losing their eyesight due to diabetic retinopathy. When high blood sugar causes blood vessels in the eye to leak or become blocked, failed blood flow damages the retina and lead to vision impairment. If left untreated, diabetic retinopathy can lead to blindness.

The Queen’s University Belfast group have initiated the REDDSTAR study, which stands for Repair of Diabetic Damage by Stromal Cell Administration, and this study involves researchers from the Queen’s Center for Vision and Vascular Science in the School of Medicine, Dentistry and Biomedical Sciences. REDDSTAR begins with the isolation of stem cells from patients and expanding them in the laboratory. Then these patient-specific cells are delivered to the patient from whom they were originally drawn in order to repair the blood vessels in the eye. This blood vessel repair is especially useful in patients with diabetic retinopathy.

Presently, diabetic retinopathy is treated with laser ablation of new blood vessels that grow in response to damage. These new blood vessels become so dense that they obscure vision. However, presently, there are no treatments to control the progression of diabetic complications.

Alan Stitt, the director of the Centre for Vision and Vascular Science at Queen’s and lead scientist for the REDDSTAR study, said, “The Queen’s component of the REDDSTAR study involves investigating the potential of a unique stem cell population to promote repair of damaged blood vessels in the retina during diabetes.” Professor Stitt continued: “The impact could be profound for patients, because regeneration of damaged retina could prevent progression of diabetic retinopathy and reduce the risk of vision loss.”

“Treatments for diabetic retinopathy are not always satisfactory. They focus on end-stages and fail to address the root causes of the condition. A novel, alternative therapeutic approach is to harness adult stem cells to promote regeneration of the damaged retinal blood vessels and thereby prevent and/or reverse retinopathy.”

Stitt said the new research project is one of several regenerative medicine approaches ongoing at his research center. Their approach is to isolate a rather well-defined population of stem cells and then deliver those stem cells to sites in the body that have been ravaged by diabetes. In particular patients, these strategies have produced remarkable benefits from stem cell-mediated repair of their blood vessels. Treatments such as this one are simply the first step in the quest to develop exciting, effective and new therapies in an area of medicine where such therapies are desperately needed.

In the REDDSTAR study, stem cells from bone marrow are used and these stem cells are provided by Orbsen Therapuetics, which is a spin-off from the Science Foundation Ireland-funded Regenerative Medicine Institute (REMEDI) at NUI Galway.

This project will design protocols for growing these bone marrow-derived stem cells and they will be tested in several preclinical models of diabetes and diabetic complications at research centers in Belfast, Galway, Munich, Berlin, and Porto before human clinical trails take place in Denmark.

Queen’s Centre for Vision and Vascular Science is a key focus of the University’s ambitious 140-million pound “together we can go Beyond” fundraising campaign. This campaign is due to expand the Vision Science program further when the University’s new 32-million pound Wellcome-Wolfson Centre for Experimental Medicine opens in 2015. Along with vision, two new programs in Diabetes and Genomics will also be established in the new Center. These Center should stimulate further investment and global collaborations between biotech and health companies in Ireland.