3D Printing of Stem Cells on Bioceramic Molds to Reconstruct Skulls


Skull defects or injuries can be very difficult to repair. However, an Australian research team has pioneered a new technique that can regrow skulls by applying stem cells to a premade scaffold with a 3D printer.

This research team consists of a surgeon, a neurosurgeon, two engineers, and a chief scientist. This five-person team is collaborating with a 3D printing firm that is based in Vienna in order to manufacture exact replicas of bone taken from the skulls of patients.

The protocol for this procedure utilizes stem cells and 3D printers, and is funded by a $1.5 million research grant that is aimed at reducing costs and improving efficiency of the Australian public health service.

The first subjects for this procedure will include patients whose skulls were severely damaged, or had a piece of their skull removed for brain surgery, and require cranial reconstruction. The skull reconstructions will take place at the Royal Perth Hospital. The first trial will commence next year. If this procedure proves to be successful it could reduce the risk of complications and surgical time, and provide massive cost savings.

If a patient has a skull injury or some other skull issue, pieces of skull bone were removed bone and stored it in a freezer for later implantation into the skull. Unfortunately, this procedure often resulted in infection or resorption of the bone. Alternatively, titanium plates can be used but these eventually they degrade, and therefore, are not ideal.

Neurosurgeon Marc Coughlan, who is a member of the five-person research team that developed this procedure, said this protocol represents the first time stem cells have been used on a 3D printed scaffold to regrow bone. “What we’re trying to do is take it one step further and have the ceramic resorb and then be only left with the patient’s bone, which would be exactly the same as having the skull back,” Coughlan told The Australian.

If this procedure proves successful, it could revolutionize cranial reconstruction surgeries. According to health minister Kim Hames, “This project highlights some of the innovative and groundbreaking research that is under way in WA’s public health system, and the commitment of the government to supporting this crucial work.”

We will keep tabs on this clinical trial to determine if it works as well as reported.

3D Printed Facial Implant Approved by the FDA


Three-dimensional printing uses modified ink-jet printers to spray cells and biomaterials into shapes that mimic human organs, tissues and structures. These three-dimensional printers have been used to make a variety of implantable structures.

Last year, Oxford Performance Materials announced that they had successfully created a 3D-printed implant that could replace 75 percent of a patient’s skull. This OsteoFab Patient Specific Cranial Device was made of PEKK (Polyetherketoneketone) biomedical polymer and was printed by using CAD files that had been developed to personally fit each patient’s specific dimensions. PEKK is an ultra high performance polymer used in biomedical implants and other highly demanding applications. The PEKK polymer has the advantage of being biomechanically similar to bone. The Osteofab skull implant was approved by the FDA in February of 2013.

Osteofab

The success of OsteoFab laid the groundwork for the recent FDA approval of Oxford’s OsteoFab Patient-Specific Facial Device, a customizable implant for facial reconstruction.

ORM 3D printed facial implant

Implants like this are known as “biocompatible implants,” which behave mechanically, in this case, like real bone.  The techniques developed by Oxford Performance Materials allow engineers to fabricate pieces that match an individual patient’s specific facial dimensions and structure in a manner that reduces the overall cost of the procedures required to surgically reconstruct a face after devastating injury. Due to these technical advances pioneered by Oxford Performance Materials, facial implants can be fabricated very quickly, which allows the plastic surgeons to get the patient into surgery sooner rather than later.

“With the clearance of our 3D printed facial device, we now have the ability to treat these extremely complex cases in a highly effective and economical way, printing patient-specific maxillofacial implants from individualized MRI or CT digital image files from the surgeon,” said Scott DeFelice, CEO of Oxford Performance Materials, in a statement. “This is a classic example of a paradigm shift in which technology advances to meet both the patient’s needs and the cost realities of the overall healthcare system.”

Oxford’s 3D-printed Osteofab cranial implants also have FDA approval and could potentially be combined with these facial implants into a single device for treating severe cases.  Although these facial implants have not yet been used in the United States, Oxford said the implants are now available to doctors and hospitals.

From artificial fingertips to airway splints that help babies breathe, 3D printing has provided the means to address complex surgical repairs.  The good news is that skull caps and facial bones are just the beginning of what 3D printing technologies can achieve.  We may soon see FDA approval for other bones, like knee caps, hips, and even small bones in the fingers and hands.

It’s all a part of a growing wave that could make 3D printers just as common as MRI machines in the tool kits used by physicians to repair and heal injured people.

A Three-Dimensional-Printed, Stem Cell Implant Repairs a Hip


Physicians and stem cell scientists at Southampton, UK have completed a hip surgery in which a 3D printed implant and stem cell graft were used to replace a diseased hip.

The 3D printed hip was made from titanium but it was designed using the patient’s CT scan and CAD CAM (computer aided design and computer aided manufacturing) technology. By printing the hip bone by means of CAD CAM technology the manufactured hip was designed to the patient’s exact specifications and measurements.

This implant will provide a new socket into which the ball of the femur bone is inserted. Between the titanium implant and the pelvis bone, the surgeons inserted a graft containing bone-making stem cells.

The stem cell graft should act as a filler for the loss of bone. The patient’s own bone marrow stem cells were added to the graft in order to provide a source of bone-making stem cells to encourage bone regeneration behind and around the metal implant.

Douglas Dunlop, a consultant orthopedic surgeon, who conducted this operation at the Southampton General Hospital, thinks that this type of procedure could be a genuine game changer. “The benefits to the patient through this pioneering procedure are numerous. The titanium used to make the hip is more durable and has been printed to match the patient’s exact measurements – this should improve the fit and could rescue the risk of having to have another surgery. The bone graft material that has been used has excellent biocompatibility and strength and will fill the defect behind the bone well, fusing it all together.”

Over the past decade Dr. Dunlop and University of Southampton scientist Professor Richard Oreffo have developed a translational research program that aims to use a patient’s own skeletal stem cells to replace damaged or lost bone during orthopedic procedures.  For example, see A Aarvold, et al., J Tissue Eng Regen Med. 2012 Oct 5. doi: 10.1002/term.1577; JO Smith, et al., J Tissue Eng Regen Med. 2014 Apr;8(4):304-13; ER Tayton, et al., J Bone Joint Surg Br. 2012 Jun;94(6):848-55; E Tayton, et al., Acta Biomater. 2012 May;8(5):1918-27; A Aarvold, et al., Regen Med. 2011 Jul;6(4):461-7. doi: 10.2217/rme.11.33; and JO Smith, et al., Tissue Eng Part B Rev. 2011 Oct;17(5):307-20.

In this particular operation, the graft is made up of a bone scaffold that allows blood to flow through it. Stem cells from the bone marrow attach to this material and grow new bone. This implant will support the 3D printed hip implant.

Professor Oreffo comments: “The 3D printing of the implant in titanium, from CT scans of the patient and stem cell graft is cutting edge and offers the possibility of improved outcomes for patients.

“Fractures and bone loss due to trauma or disease are a significant clinical and socioeconomic problem. Growing bone at the point of injury alongside a hip implant that has been designed to the exact fit of the patient is exciting and offers real opportunities for improved recovery and quality of life.”

For the patient, Meryl Richards, from Hampshire, the procedure means an end to her hip troubles. In 1977 she was involved in a traffic accident and since then has had to have six operations to repair her injured hip.

She says: “The way medicine has evolved is fantastic. I hope that this will be the last time that I have to have a hip operation. I feel excited to have this pioneering surgery and I can see what a benefit it will have to me.”