The Therapeutic Potential of Fat-Based Stem Cells Decreases With Age


Fat is a rich source of stem cells for regenerative medicine.  Treating someone with their own stem cells from their own fat certainly sounds like an attractive option.  However, a new study shows that demonstrates that the therapeutic value of fat-based stem cells declines when those cells come from older patients.

“This could restrict the effectiveness of autologous cell therapy using fat, or adipose-derived mesenchymal stromal cells (ADSCs), and require that we test cell material before use and develop ways to pretreat ADSCs from aged patients to enhance their therapeutic potential,” said Anastasia Efimenko, M.D., Ph.D.  Dr Efimenko and Nina Dzhoyashvili, M.D., were first authors of the study, which was led by Yelena Parfyonova, M.D., D.Sc., at Lomonosov Moscow State University, Moscow.

Heart disease remains the most common cause of death in most countries.  Mesenchymal stromal cells (MSCs) collected from either bone marrow or fat are considered one of the most promising therapeutic agents for regenerating damaged tissue because of their ability to proliferate in culture and differentiate into different cell types.  Even more importantly they also have the ability to stimulate the growth of new blood vessels (angiogenesis).

In particular, fat is considered an ideal source for MSCs because it is largely dispensable and the stem cells are easily accessible in large amounts with a minimally invasive procedure.  ADSCs have been used in several clinical trials looking at cell therapy for heart conditions, but most of the studies used stem cells from relatively healthy young donors rather than sick, older ones, which are the typical patients who suffer from heart disease.

“We knew that aging and disease itself may negatively affect MSC activities,” Dr. Dzhoyashvili said. “So the aim of our study was to investigate how patient age affects the properties of ADSCs, with special emphasis on their ability to stimulate angiogenesis.”

The Russian team analyzed age-associated changes in ADSCs collected from patients of different age groups, including some patients who suffered from coronary artery disease and some without.  The results showed that ADSCs from the older patients in both groups showed some of the characteristics of aging, including shorter telomeres (the caps on the ends of chromosomes that protect them from deterioration), which confirms that ADSCs do age.

“We showed that ADSCs from older patients both with and without coronary artery disease produced significantly less amounts of angiogenesis-stimulating factors compared with the younger patients in the study and their angiogenic capabilities lessened,” Dr. Efimenko concluded. “The results provide new insight into molecular mechanisms underlying the age-related decline of stem cells’ therapeutic potential.”

“These findings are significant because the successful development of cell therapies depends on a thorough understanding of how age may affect the regenerative potential of autologous cells,” said Anthony Atala, M.D., director of the Wake Forest Institute for Regenerative Medicine, and editor of STEM CELLS Translational Medicine, where this research was published.

Brown Fat Stem Cells for Treating Diabetes and Obesity


Mammals have two main types of fat: brown fat and white fat.  Brown fat is especially abundant in newborns and in mammals undergoing hibernation.  The primary function of brown fat is to produce body heat so that the animal does not shiver.  In contrast to white fat cells, which contain a single lipid droplet, brown fat cells contain numerous smaller droplets and a higher number of mitochondria, and it is these mitochondria and their high iron content that makes this fat tissue brown.  Brown fat also contains more small blood vessels than white fat, since it has a greater need for oxygen than most tissues.

Recently, researchers at the University of Utah School of Medicine have identified stem cells from brown fat.  The principal researcher of this project, Amit Patel, associate professor of medicine, refuted an old dogma – that adult humans do not possess brown fat.  Children have large amounts of brown fat that is highly metabolically active.  Children can eat a great deal and not gain any weight, relative to adults.  Adults, on the other hand, have an abundance of white fat, and accumulation of white fat leads to weight gain and cardiovascular disease (something not seen in brown fat).  As people age, the amount of white fat increases and the amount of brown fat decreases, which contributes to the onset of diabetes and high cholesterol.

As Patel put it, “If you have more brown fat, you weigh less, you’re metabolically efficient, and you have fewer instances of diabetes and high cholesterol.  The unique identification of human brown fat stem cells in the chest of patients aged 28-34 years is profound.  We were able to isolate the human stem cells, culture and grow them, and implant them into a pre-human model which has demonstrated positive effects on glucose levels.”

In vitro differentiation of brown adipose derived stem cells (BADSCs). (A) Gene expression profile comparing undifferentiated BADSCs to undifferentiated white adipose derived stem cells derived from subcutaneous adipose tissue. Genes in red are associated with brown fat phenotype. (B) Gene expression profile comparing undifferentiated brown adipose derived stem cells to differentiated brown adipocytes. Biological replicates performed in triplicate from a single clone were used for gene expression profile. (C) Transmission electron microscopy of 21 day brown adipocyte differentiation induced with fibronectin type III domain containing 5 (FNDC5) demonstrate multiocular intracytoplasmic lipid vacuoles and mitochondria (arrows). (D) Alizarian red staining of brown adipose derived stem cells induced to undergo osteogenesis. (E) Alcian blue staining of brown adipose derived stem cells directionally differentiated into chondrocytes. (F) Fatty acid binding protein 4 (FABP4) immunocytochemistry of brown adipose derived stem cells induced to undergo white adipogenesis. (G) Undifferentiated BADSCs. (H) Western blot 21 days post FNDC5 induction. Lane 1 brown adipose derived stem cells directionally differentiated into brown adipocytes. Lane 2 non- FNDC5 cells.
In vitro differentiation of brown adipose derived stem cells (BADSCs). (A) Gene expression
profile comparing undifferentiated BADSCs to undifferentiated white adipose derived stem cells
derived from subcutaneous adipose tissue. Genes in red are associated with brown fat phenotype. (B)
Gene expression profile comparing undifferentiated brown adipose derived stem cells to differentiated
brown adipocytes. Biological replicates performed in triplicate from a single clone were used for gene
expression profile. (C) Transmission electron microscopy of 21 day brown adipocyte differentiation
induced with fibronectin type III domain containing 5 (FNDC5) demonstrate multiocular
intracytoplasmic lipid vacuoles and mitochondria (arrows). (D) Alizarian red staining of brown
adipose derived stem cells induced to undergo osteogenesis. (E) Alcian blue staining of brown adipose
derived stem cells directionally differentiated into chondrocytes. (F) Fatty acid binding protein 4
(FABP4) immunocytochemistry of brown adipose derived stem cells induced to undergo white
adipogenesis. (G) Undifferentiated BADSCs. (H) Western blot 21 days post FNDC5 induction. Lane 1
brown adipose derived stem cells directionally differentiated into brown adipocytes. Lane 2 non-
FNDC5 cells.

This new discovery of finding brown fat stem cells may help in identifying potential drugs that may increase the body’s own ability to make brown fat or find novel ways to directly implant brown fat stem cells into patients.

Stem Cells that Promote Nerve Regeneration


A study by Johns Hopkins researchers W. P. Andrew Lee and Gerald Brandacher have used stem cells from fat to promote nerve regeneration in rats that have suffered paralyzing leg injuries and in other rodents that have received hind-leg transplants.

These findings have shown that mesenchymal stem cells (MSCs) can stimulate nerve regeneration, and deepen our understanding of how MSCs improve nerve regeneration after injury and limb transplant, while potentially minimizing the need for lifelong immunosuppression after reconstructive surgery to replace a lost limb.

Medical student John Pang said, “Mesenchymal stem cells may be a promising add-on therapy to help damaged nerves regenerate. We obviously need to learn much more, but we are encouraged by what we learned from these experiments.”

MSCs have the ability to readily differentiate into bone, cartilage, and fat cells, but in the laboratory, scientists have been able to extend the possible cell fates that MSCs can form, including nerve and blood vessel cells.

Another advantage of MSCs is their ability to escape recognition by the immune system. MSCs secrete a variety of molecules that suppress the immune response against them. According to Pang it is this very property of MSCs that researchers hope to use in order to regenerate nerves without requiring patients to take immunosuppressive drugs.

Harvesting MSCs from fat is relatively easy, but they can also be isolated from bone marrow. Although, bone marrow aspirations can cause more pain in some pain than liposuction.

In this experiment, researchers used three different groups of rodents. In one group, the rats had their femoral nerves cut and repaired. In the second group, the rats received a hind-leg transplant, and in the third group, the rats received a different type of transplant. Some of these rats had MSCs directly injected into the sciatic nerve, and others had the MSCs intravenously administered. After 16 weeks, the researchers say the rats with severed and repaired nerves with MSCs showed significant improvements in nerve regrowth and nerve function. Those with transplants from similar rats appeared to also show benefits.

Sciatic nerve

Those rats who transplants came from dissimilar rodent types – a situation similar to those patients who receive transplants from cadavers – rejected their new limbs.  Thus MSCs might be a adjuvant treatment for patients with nerve damage.

Benefits of stem cells in treating MS declines with donor’s age


MS is a neurodegenerative disease characterized by inflammation and scar-like lesions throughout the central nervous system (CNS). There is no cure and no treatment eases the severe forms of MS. But previous studies on animals have shown that transplantation of mesenchymal stem cells (MSCs) holds promise as a therapy for all forms of MS (see Bai L, et al., Glia 2009 Aug 15;57(11):1192-203). The MSCs migrate to areas of damage, release trophic (cell growth) factors and exert protective effects on nerves and regulatory effects to inhibit T cell proliferation.

Several clinical trials examining the ability of fat-derived MSCs to treat MS patients have been conducted. Unfortunately, most of these studies are rather small and the results are all over the place. One study treated ten patients with MSCs injected intrathecally (just under the meninges that cover the brain and spinal cord) and the results were mixed; 6/10 improved, 3 stayed the same and one deteriorated. Another study treated ten patients with intravenous fat-derived MSCs and the patients showed symptomatic improvement, but when MRIs of the brain were examined, no improvements could be documented. A third study treated 15 people with intrathecal injections and IV administrations of MSCs, and some stabilized. A fourth study only examined 3 patients treated with a mixture of their own fat-derived MSCs and fat-derived MSCs from another person. In all three cases, their MRIs and symptoms improved. A fifth study used umbilical cord MSCs administered intravenously and the patient showed substantial improvement (for review see Tyndall, Pediatric Research 71(4):433-438).

These results are somewhat encouraging, but also somewhat underwhelming and clinical trials go. Why did some work and other not work as well? In order to understand why, researchers must understand the biologic changes and therapeutic effects of older donor stem cells. A new study appearing in the journal STEM CELLS Translational Medicine is the first to demonstrate that adipose-derived MSCs donated by older people are less effective than cells from their younger counterparts.

Fortunately, all the available MS-related clinical trials have confirmed the safety of autologous MSC therapy. As to the efficacy of these cells, however, it is unclear if MSCs derived from older donors have the same therapeutic potential as those from younger ones.

“Aging is known to have a negative impact on the regenerative capacity of most tissues, and human MSCs are susceptible to biologic aging including changes in differentiation potential, proliferation ability and gene expression. These age-related differences may affect the ability of older donor cells to migrate extensively, provide trophic support, persist long-term and promote repair mechanisms,” said Bruce Bunnell, Ph.D., of Tulane University’s Center for Stem Cell Research and Regenerative Medicine. He served as lead author of the study, conducted by a team composed of his colleagues at Tulane.

In their study, Bunnell and his colleagues induced an MS-like disease in laboratory mice called chronic experimental autoimmune encephalomyelitis (EAE). Then they treated them before disease onset with human adipose-derived MSCs derived from younger (less than 35 years) or older (over age 60) donors. The results corroborated previous studies that suggested that older donors are less effective than their younger counterparts.

“We found that, in vitro, the stem cells from the older donors failed to ameliorate the neurodegeneration associated with EAE. Mice treated with older donor cells had increased inflammation of the central nervous system, demyelination leading to an impairment in movement, cognition and other functions dependent on nerves, and a proliferation of splenocytes [white blood cells in the spleen], compared to the mice receiving cells from younger donors,” Dr. Bunnell noted.

In fact, the proliferation of T cells (immune cells that attack the myelin sheath in MS patients) in these mice indicated that older MSCs might actually stimulate the proliferation of the T cells, while younger stem cells inhibit T cell proliferation. T cells are a type of white blood cell in the body’s immune system that help fight off disease and harmful substances. When they attack our own tissues, they can cause diseases like MS.

As such, Dr. Bunnell said, “A decrease in T cell proliferation would result in a decreased number of T cells available to attack the CNS in the mice, which directly supports the results showing that the CNS damage and inflammation is less severe in the young MSC-treated mice than in the old MSC-treated mice.”

“This study in an animal model of MS is the first to demonstrate that fat-derived stem cells from older human donors have less therapeutic effectiveness than cells from young donors,” said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. “The results point to a potential need to evaluate cell therapy protocols for late-onset multiple sclerosis patients.”

Treating Crohn’s Disease Fistulas with Fat Stem Cells


All of us have probably heard of Crohn’s disease or have probably known someone with Crohn’s disease. While the severity of this disease varies from patient to patient, some people with Crohn’s disease simply cannot get a break.

Crohn’s disease is one of a group of diseases known as IBDs or “Inflammatory Bowel Diseases.” IBDs include Crohn;s disease, which can affect either the small or large intestine and rarely the esophagus and mouth, ulcerative colitis, which is restricted to the large intestine, and other rarer types of IBDs known that include Collagenous colitis, Lymphocytic colitis, Ischaemic colitis, Diversion colitis, Behçet’s disease, and Indeterminate colitis.

Crohn’s disease (CD) involves the patient’s immune system attacking the tissues of the gastrointestinal tract, which leads to chronic inflammation within the bowel. While the exact mechanism by which this disease works is still not completely understood and robustly debated, Crohn’s disease was originally thought to be an autoimmune disease in which the immune system recognizes some kind of surface protein in the gastrointestinal tract as foreign and then attacks it. However, genetic studies of CD, linked with clinical and immunological studies have shown that this is not the case. Instead, CD seems to be due to a poor innate immunity so that the bowel has an accumulation of intestinal contents that breach the lining of the gastrointestinal tract, resulting in chronic inflammation. A seminal paper by Daniel Marks and others in the Lancet in 2006 provided hard evidence that this is the case. When Marks and others tested the white blood cells from CD patients and their ability to react to foreign invaders, those cells were sluggish and relatively ineffective. Therefore, Crohn’s seems to be an overactivity of the acquired immunity to make up for poor innate immunity.

Given all that, one of the biggest, most painful consequences of CD are anal fistulas. If those sound painful it’s because they are. A fistula is a connection between to linings in your body that should not normally be connected. In CD patients, the anus and the attached rectum get kicked about by excessive inflammation and tears occur. These tears heal, but the healing can cause connections between linings that previously did not exist. Therefore fecal material not comes out of the body in more than one place. Sounds disgusting? It gets worse. Those areas that leak feces are not subject to extensive pus formation and they must be fixed surgically. But how do you fix something that is constantly inflamed? It’s an ongoing problem in medicine.

Enter stem cells to the rescue, maybe. In Spain, a multicenter clinical study has just been published that shows that fat-derived mesenchymal stem cells might provide a better way to treat these fistulas in CD patients. Mesenchymal stem cells have the ability to suppress inflammation, and for that reason, they are excellent candidates to accelerate healing in cases such as these.

Galindo and his group took 24 CD patients who had at least one draining fistula (yes, some have more than one) and gave them 20 million fat-derived mesenchymal stem cells. These cells were extracted from someone else, which is an important fact, since liposuction procedures on these patients might have added to their already surfeit of inflammation.

For this treatment, the cells were administered directly on the lesion, which is almost certainly important. If the closing of the fistula was incomplete after 12 weeks, then the patients were given another dose of 40 million fat-derived mesenchymal stem cells right on the lesion. All these patients were followed until week 24 after the initial stem cell administration.

The results were very hopeful. There were no major adverse effects six months after the stem cell treatment. This is a result seen over and over with mesenchymal stem cells – they are pretty safe when administered properly. Secondly, full analysis the data showed that at week 24 69.2% of the patients showed a reduction in the number of draining fistulas. Even more remarkably, 56.3% of the patients achieved complete closure of the treated fistula. That is just over half. Also, 30% of the cases showed complete closure of all existing fistulas. These results are exciting when you consider the criteria they used for complete closure: absence of draining pus through its former opening. complete “re-epithelization” of the tissue, which means that the lining of the tissue is healed, looks normal and is properly attached to the proper neighbors, and magnetic resonance image (MRI) scans of the region must look normal. For these patients, the MRI “Score of Severity,” which is a measure of the structural abnormality of the anal region, showed statistically significant reductions at week 12 with a marked reduction at week 24. Folks that’s good news.

Galindo interprets his results cautiously and notes that this is a small study, which is true. He also states that the goal of this study was to ascertain the safety of this technique, and when it comes to safety, this technique is certainly safe. When it comes to efficacy, another larger study is required that specifically examined the efficacy of this technique. Galindo is, of course, quite correct, but this is certainly a very exciting result, and hopefully these cells will get further chances to “strut their therapeutic stuff.”

See de la Portilla F, et al Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial.  Int J Colorectal Dis. 2013 Mar;28(3):313-23. doi: 10.1007/s00384-012-1581-9. Epub 2012 Sep 29.

ATHENA Trial Tests Fat-Derived Stem Cells as a Treatment for Heart Failure


The FDA-approved ATHENA trial is the brainchild of stem cell researchers at the Texas Heart Institute at St. Luke’s Episcopal Hospital. The ATHENA trial is the first trial in the United States to examine the efficacy of adipose-derived regenerative cells or ADRCs as a treatment for a severe form of heart failure.

To harvest ADRCs, Texas Heart Institute researchers used a technique that was developed by Cytori Therapeutics, which is a biotechnology company that specializes in cell-based regenerative therapies. Previous clinical trials in Europe strongly suggest that such ADR-based therapies are quite safe and feasible. To date, physicians are the Texas Heart Institute have treated six patients as a part of the ATHENA trial.

athena_process_illustration_500x369.jpg

James Willerson, the president and medical director of the Texas Heart Institute, is the principal investigator in the ATHENA trial. Willerson said, “We have found that body fat tissue is a valuable source of regenerative stem cells that are relatively easy to access. We have high hopes for the therapeutic promise of this research and believe that it will lead quickly to larger trials.”

The subjects for the ATHENA trial are patients who suffer from chronic heart failure due to coronary heart disease. Coronary heart disease results from blockage of the coronary vessels and feed the heart muscle and limits the oxygen supply to the heart muscle, and consequently, the pumping activity of the heart muscle. Data from the American Heart Association reveals that there are about 5.1 million Americans who currently live with heart failure, and in many cases, the only viable treatment is a left ventricular assist device (LVAD) or a heart transplant. Unfortunately, there are only about 2,200 heart transplants a year due to a severe shortage of organs.

Coronary artery disease

Patients who are enrolled in the ATHENA trials are randomized and some will receive a placebo treatment and others will receive the experimental treatment. All patients will undergo liposuction in order to remove adipose or fat tissue. Processing of the fat tissue isolates the ADRCs, and the experimental patients will have these cells injected directly into their heart muscle, but the placebo patients will receive injections of culture medium or saline that contains no cells. ATHENA will measure several data endpoints that include objective measures of heart function, exercise capacity, and questionnaires that assess the symptoms and health-related quality-of-life.

The US trial will enroll a total of 45 patients at several centers around the country and these centers include the Texas Heart Institute, Minneapolis Heart Institute, Scripps Green Hospital in San Diego, CA, the University of Florida at Gainesville, and Cardiology P.C. in Birmingham. Patients are being enrolled.

Healthline has recently compiled the statistics on heart disease in an impressive and colorful manner at this link.

Blood Vessel-Making Stem Cells From Fat


Blood vessel obstruction deprives tissues of life-giving oxygen and leads to the death of cells. If enough cells within a tissue die, the organ in which whose tissues reside could experience organ failure.

To quote the Sound of Music, “How does one solve a problem like blood vessel obstruction?” The obvious answer is to make new blood vessels to replace the blocked ones. Scientists have identified growth factors that are important in blood vessel formation during development. Therefore, injecting these growth factors should lead to the formation of new blood vessels, right? Unfortunately, such a strategy does not work very well (see Collison and Donnelly, Eur J Vasc Endovasc Surg 2004 28:9-23). Therefore, vascular specialists have focused on the ability of stem cells make new blood vessels, and this approach has yielded some very definite successes.

During development, the same stem cell gives rise to blood vessels and blood cells. This stem cell, the hemangioblast is found in a structure known as the yolk sac (even though it never functions as a yolk sac). In the yolk sac, during the third week of development, little specs form called “blood islands. These blood islands are small clusters of hemangioblasts with the cells at the center of the cluster forming blood cells and the cells at the periphery of the blood island forming blood vessels.

In adults, blood cell-making stem cells are found in the bone marrow. Blood vessel-making stem cells are endothelial progenitor cells or EPCs can be rather easily isolated from peripheral blood, however they are thought to originate from bone marrow. EPCs are not a homogeneous group of cells. There are different types with different surface molecules found in different locations.

Recently another cell from circulating blood called an “endothelial colony forming cell” or ECFC has been discovered, and this cell can attach to uncoated plastic surfaces in a growth medium. These cells can be grown to high numbers, even though it takes a rather long time to expand them. Once the ECFC culture system is further perfected, ECFCs will be excellent candidates for therapeutic trials (Reinisch et al., Blood 2009 113: 6716-25).

Fat tissue is also a reservoir of EPCs and mesenchymal stem cells. Fat-based mesenchymal stem cells help induce blood vessel formation and stimulate fat-based EPCs form blood vessels. Because of this remarkable “one-two punch” in fat, with cells that stimulate blood vessel formation and cells that actually form blood vessels, fat is a source of blood vessel-forming cells that can be used for therapeutic purposes.

Stem cells from fat.
Stem cells from fat.

Several pre-clinical experiments and presently ongoing clinical trials have examined the ability of fat-based stems to treat patients with conditions that result from insufficient circulation to various tissues. In rodents, experimental obstruction of the blood vessels in the hindlimb create a condition called “hindlimb ischemia.” In a rodent model of hindlimb ischemia, human fat-based stem cell applications not only improve the use of the limb and decrease limb damage, but also induce the formation of new blood vessels that definitely come from the applied stem cells (Miranville, et al., Circulation 2004 110: 349-55; Planat-Bernard, et al., Circulation 2004 109: 656-63 & Moon et al., Cell Physiol Biochem 2006 17: 279-90). Several clinical trials have been conducted with bone marrow-based EPCs for limb-based ischemia in humans, and these trials have been largely successful(see Szoke and Brinchmann, Stem Cells Translational Medicine 2012: 658-67 for a list of these trials). Adding mesenchymal stem cells from fat might improve the results of these trials.

In the heart, obstructed blood vessels can cause intense chest pain, a condition known as “angina pectoris.” EPCs have been used in clinical trials to treat patients with angina pectoris, and these trials have all been successful and have all used EPCs from bone marrow. These experiments, despite their success, have used bone marrow-based cells that were not fractionated and EPCs are less than 1% of the total number of cells. Also, the vast majority of cells introduced into heart migrate into the lungs, spleen and other organs. Also, those cells that remain tend to die off. A way to improve the survival of these implanted cells might be to combine them with mesenchymal stem cells from fat with EPCs from fat. Presently, the MyStromalCell trial is underway to test the efficacy of fat-based stem cells on the heart.

Fat provides an incredible treasure-trove of healing cells that have been demonstrated in animal experiments to relieve tissue ischemia and generate new blood vessels (for a summary of pre-clinical experiments in laboratory animals, see Qayyum AA, et al., Regen Med. 2012 May;7(3):421-8). Clinical trials with these cells are also underway. We have almost certainly only begun to tap to potential of these exciting cells that can be extracted so easily for our bodies.