Dallas Stem Cell Researchers Use Amniotic Tissue To Successfully Treat Non-Healing Surgical Wound


The founders of the Riordan-McKenna Institute, Neil Riordan, PhD and orthopedic surgeon, Wade McKenna, DO, have announced that the use of sterile, dehydrated amniotic tissue AlphaPATCH™, which was developed by Amniotic Therapies in Dallas, Texas, resulted in complete healing of an otherwise non-healing surgical knee wound.

The case involved a 78-year-old male who had a non-healing surgical wound from a total right knee replacement that had been performed six weeks earlier. The patient had not responded after 6 weeks of conservative wound care and the wound showed no signs of healing.

Dr. McKenna irrigated the wound in the operating room and then placed two AlphaPATCH dry amniotic membranes (4 cm x 4 cm) over the wound before dressing it.

At the two-week follow-up visit, a central scab had formed over the wound. At four-weeks, the wound had completely scabbed over, and by eight-weeks, the scab had just fallen off and the wound was healing well, covered by a patch of immature skin about the size of a penny. At the ten-week follow-up visit, the wound was completely healed.

The case report, entitled “Case Report Of Non-Healing Surgical Wound Treated With Dehydrated Amniotic Membrane” is published in the July issue of the Journal of Translational Medicine. This milestone in Dr. Riordan and Dr. McKenna’s ongoing study of the use of amniotic tissue products and stem cells to stimulate or augment wound healing is the third peer-reviewed journal article on regenerative medicine published by the Riordan McKenna Institute.

Dehydrated amniotic membrane products like AlphaPATCH is thought by most people to contain live stem cells, which is not the case. However, dehydrated amniotic membrane does contain several growth factors that promote healing and stimulate the body’s own stem cells to behave more similar to stem cells in a younger person.

“It’s gratifying to have this new tool in my toolbox. I treated conservatively and was getting nowhere. Even in a patient with a significant smoking history and decreased blood flow to his legs, we were able to achieve this result. Chronic wounds can be very frustrating for both the patient and the caregiver,” remarked Troy Chandler, PA-C, who participated in the patient’s treatment.

Advertisements

New Approach for Corneal Stem Cell Treatments


More than 8 million people worldwide suffer from corneal blindness; a form of blindness that results from cloudiness of the outermost covering of the eye, the cornea.

Usually, the cornea copes quite well with minor injuries or scrapes and scratches. If the cornea is scratched, healthy cells slide over quickly and patch the injury before infection occurs and vision is not adversely affected. However, if the scratch penetrates the cornea more deeply, then the healing process takes longer and can result in greater pain, blurred vision, tearing, redness, and extreme sensitivity to light. Such scratches may require professional treatment. Even deeper scratches can also cause corneal scarring, which results in a haze on the cornea that can greatly impair vision, and the patient might require a corneal transplant.

Alternatively, corneal stem cells can help heal a damaged cornea; especially in those cases where the cornea has been damaged to the point where the native stem cell population has suffered irreparable damage (e.g., chemical burns, eye infections, or cases where the patient was born with a corneal stem cell deficiency).

A feasible treatment for such cases is a corneal stem cell transplant from another eye or from cultured corneal stem cells. Unfortunately, this procedure has not yet been standardized to date.

Fortunately, researchers at the Eye Program at the Cedar-Sinai Regenerative Medicine Institute have designed a fast, new procedure for preparing human amniotic membrane to use as a scaffold for corneal stem cells. The membrane provides a foundation that supports the growth of stem cells that can be grafted onto the cornea.

To date, a standardized method does not exist for the preparation of amniotic membranes for culturing corneal stem cells. Many methods use chemicals and may leave behind amniotic cells and membrane components.

This new procedure, however, takes less than one minute and ensures complete amniotic cell removal and preservation of amniotic membrane components, and, as an added bonus, supports the overall growth of various stem and tissue cells.

“We believe that this straightforward and relatively fast procedure would allow easier standardization of amniotic membrane as a valuable stem cell support and improve the current standard of care in corneal stem cell transplantation,” said the lead author of this work Alexander Ljubimov, the director of the Eye Program at the Cedar-Sinai Regenerative Medicine Institute. “This new method may provide a better method for researchers, transplant corneal surgeons, and manufacturing companies alike.”

The amniotic membrane has several beneficial properties for corneal stem cells culturing and use in corneal transplantations. For this reason it is an attractive framework for the growth and culture of corneal stem cells and for corneal transplantations.

The new method for amniotic membrane preparation will provide a fast way to create scaffolds for cell expansion and might potentially streamline clinical applications of cell therapies.