Nanotubules Link Damaged Heart Cells With Mesenchymal Stem Cells to Both of Their Benefit


Mesenchymal stem cells are found throughout the body in bone marrow, fat, tendons, muscle, skin, umbilical cord, and many other tissues. These cells have the capacity to readily differentiate into bone, fat, and cartilage, and can also form smooth muscles under particular conditions.

Several animal studies and clinical trials have demonstrated that mesenchymal stem cells can help heal the heart after a heart attack. Mesenchymal stem cells (MSCs) tend to help the heart by secreting a variety of particular molecules that stimulate heart muscle survival, proliferation, and healing.

Given these mechanisms of healing, is there a better way to get these healing molecules to the heart muscle cells?

A research group from INSERM in Creteil, France has examined the use of tunneling nanotubes to connect MSCs with heart muscle cells. These experiments have revealed something remarkable about MSCs.

Florence Figeac and her colleagues in the laboratory of Ann-Marie Rodriguez used a culture system that grew fat-derived MSCs and with mouse heart muscle cells. They induced damage in the heart muscle cells and then used tunneling nanotubes to connect the fat-based MSCs.

They discovered two things. First of all, the MSCs secreted a variety of healing molecules regardless of their culture situation. However, when the MSCs were co-cultured with damaged heart muscle cells with tunneling nanotubes, the secretion of healing molecules increased. The tunneling nanotubes somehow passed signals from the damaged heart muscle cells to the MSCs and these signals jacked up secretion of healing molecules by the MSCs.

The authors referred to this as “crosstalk” between the fat-derived MSCs and heart muscle cells through the tunneling nanotubes and it altered the secretion of heart protective soluble factors (e.g., VEGF, HGF, SDF-1α, and MCP-3). The increased secretion of these molecules also maximized the ability of these stem cells to promote the growth and formation of new blood vessels and recruit bone marrow stem cells.

After these experiments in cell culture, Figeac and her colleagues used these cells in a living animal. They discovered that the fat-based MSCs did a better job at healing the heart if they were previously co-cultured with heart muscle cells.

Exposure of the MSCs to damaged heart muscle cells jacked up the expression of healing molecules, and therefore, these previous exposures made these MSCs better at healing hearts in comparison to naive MSCs that were not previously exposed to damaged heart muscle.

Thus, these experiments show that crosstalk between MSCs and heart muscle cells, mediated by nanotubes, can optimize heart-based stem cells therapies.

Culture Medium from Endothelial Progenitor Cells Heals Hearts


Endothelial Progenitor Cells or EPCs have the capacity to make new blood vessels but they also produce a cocktail of healing molecules. EPCs typically come from bone marrow, but they can also be isolated from circulating blood, and a few other sources.

The laboratory of Noel Caplice at the Center for Research in Vascular Biology in Dublin, Ireland, has grown EPCs in culture and shown that they make a variety of molecules useful to organ and tissue repair. For example, in 2008 Caplice published a paper in the journal Stem Cells and Development in workers in his lab showed that injection of EPCs into the hearts of pigs after a heart attack increased the mass of the heat muscle and that this increase in heart muscle was due to a molecule secreted by the EPCs called TGF-beta1 (see Doyle B, et al., Stem Cells Dev. 2008 Oct;17(5):941-51).

In other experiments, Caplice and his colleagues showed that the culture medium of EPCs grown in the laboratory contained a growth factor called “insulin-like growth factor-1” or IGF1. IGF1 is known to play an important role in the healing of the heart after a heart attack. Therefore, Caplice and his colleagues tried to determine if IGF1 was one of the main reasons EPCs heal the heart.

To test the efficacy of IGF1 from cultured EPCs, Caplice’s team grew EPCs in the laboratory and took the culture medium and tested the ability of this culture medium to stave off death in oxygen-starved heart muscle cells in culture. Sure enough, the EPC-conditioned culture medium prevented heart muscle cells from dying as a result of a lack of oxygen.

When they checked to see if IGF1 was present in the medium, it certainly was. IGF1 is known to induce the activity of a protein called “Akt” inside cells once they bind IGF1. The heart muscle cells clearly had activated their Akt proteins, thus strongly indicating the presence of IGF1 in the culture medium. Next they used an antibody that specifically binds to IGF1 and prevents it from binding to the surface of the heart muscle cells. When they added this antibody to the conditioned medium, it completely abrogated any effects of IGF1. This definitively demonstrates that IGF1 in the culture medium is responsible for its effects on heart muscle cells.

Will this conditioned medium work in a laboratory animal? The answer is yes. After inducing a heart attack, injection of the conditioned medium into the heart decreased the amount of cell death in the heart and increased the number of heart muscle cells in the infarct zone, and increased heart function when examined eight weeks after the heart attacks were induced. The density of blood vessels in the area of the infarct also increased as a result of injecting IGF1. All of these effects were abrogated by co-injection of the antibody that specifically binds IGF1.

From this study Caplice summarized that very small amounts of IGF1 (picogram quantities in fact) administered into the heart have potent acute and chronic beneficial effects when introduced into the heart after a heart attack.

These data are good enough grounds for proposing clinical studies. Hopefully we will see some in the near future.