Factor From Umbilical Cord Blood Could Treat Harmful Inflammation


Umbilical cord blood turns out to have a factor that can potentially fight inflammation, according to scientists at the University of Utah School of Medicine. This study was published online Sept. 6, 2016, in The Journal of Clinical Investigation.

“We found something we weren’t expecting, and it has taken us to new strategies for therapy that didn’t exist before,” says Guy Zimmerman, M.D., a professor of internal medicine at the University of Utah School of Medicine, who was also the senior author of this work. Dr. Zimmerman collaborated with associate professor of pediatrics, Christian Con Yost, M.D., and their colleagues for this work.

Inflammation is well-known to anyone who has whacked their leg, been stung by a bee or a wasp, or anyone who over-stressed their muscles. The redness, heat pain, and swelling are signs that the body is cleaning up damaged cells and their debris, fighting invading microorganisms, and beginning the healing process. However, under certain circumstances, inflammation can go overboard and turn against us and seriously and chronically damage healthy tissues. Out-of-control inflammation is probably the culprit behind several different conditions ranging from rheumatoid arthritis to sepsis. In fact, the inflammatory overreaction to infections is one of the most common causes of hospital deaths.

Dr. Yost and his coworkers successfully isolated a cord blood factor, called “neonatal NET inhibitory factor” or nNIF. This name comes from the ability of this factor to inhibit “NETs” or neutrophil extracellular traps. NETs or neutrophil extracellular traps are composed of processed chromatin bound to granular and selected cytoplasmic proteins that are released by white blood cells called neutrophils. NETs seem to be a kind of last resort that neutrophils turn to in order to control microbial infections. Even though NETs usually help our bodies ward off infectious bacteria and viruses, they can also damage blood vessels and organs during sepsis.

nets

As physicians who have treated critically ill patients suffering from out-of-control inflammation, Drs. Zimmerman and Yost recognized the therapeutic potential of nNIF. “We knew we were onto something that could be very meaningful,” recalls Yost.

To test if this cord blood-based factor could control sepsis, Zimmerman and Yost and others treated groups of mice that suffered from laboratory-induced inflammatory disease. In the absence of treatment, only 20 percent of the mice survived longer than two to four days. However, 60% of those mice treated with nNIF survived after the same amount of time.

“Sepsis is a case where the body’s reaction to infection is lethal,” says Yost. “nNIF is offering insights into how to keep the inflammatory response within prescribed limits.” He adds that they will carry out additional studies to test the therapeutic properties of nNIF.

Anti-Inflammatory Agent Isolated From Umbilical Cord Blood Infection fighting cells from umbilical cord blood (left) and circulating blood three days after birth (right) from the same prematurely born baby. Umbilical cord blood has high levels of a factor, called neonatal NET inhibitory factor (nNIF), which inhibits a specific inflammatory response called NETs. Within two weeks after birth, nNIF levels drop and NETs can form. True to their name, they consist of a net-like substance that traps infectious agents like bacteria, as seen on the right. nNIF is showing promise as a potential therapy against harmful inflammation and sepsis.
Anti-Inflammatory Agent Isolated From Umbilical Cord Blood
Infection fighting cells from umbilical cord blood (left) and circulating blood three days after birth (right) from the same prematurely born baby. Umbilical cord blood has high levels of a factor, called neonatal NET inhibitory factor (nNIF), which inhibits a specific inflammatory response called NETs. Within two weeks after birth, nNIF levels drop and NETs can form. True to their name, they consist of a net-like substance that traps infectious agents like bacteria, as seen on the right. nNIF is showing promise as a potential therapy against harmful inflammation and sepsis.

nNIF seems to be present for just a brief window of time at the beginning of life. It circulates in cord blood and persists in the baby’s own bloodstream for up to two weeks after birth. However, after two weeks, nNIF disappears and is not found in older babies and is completely absent from the blood of adults. Scientists in Yost’s laboratory also discovered that the placenta also contains a similar, albeit less potent, anti-inflammatory agent. The evanescent nature of these factors possibly indicates that inflammation is under tight control during this time, since the fragility of young babies might make extensive amounts of inflammation deleterious to their health.

“The beginning of life is a delicate balance,” says Yost. “Our work is showing that it is important to have the right defenses, but they have to be controlled.”

Umbilical Cord Blood Cells Combined with Growth Factors Improves Traumatic Brain Injury Outcomes


Approximately 2 million Americans experience a traumatic brain injury every year. Most of these are individuals who employed in high-risk jobs such as the military, firefighting, police work and others types of essential but highly dangerous jobs. No matter how small the injury, individuals who have suffered a traumatic brain injury (TBI) can suffer from a whole host of motor, behavioral, intellectual and cognitive disabilities over the short or long-term. Unfortunately, there are few clinical treatments for TBI, and the few we have are rather ineffective.

In order to design better, more effective treatments for TBI, neuroscientists at the Center of Excellence for Aging and Brain Repair, Department of Neurosurgery in the USF Health Morsani College of Medicine, University of South Florida, have used umbilical cord stem cells in combination with growth factors to treat TBIs in mice.

This study investigated the ability of several strategies, both by themselves and in combination with other therapies, to treat rats with a laboratory form of TBI. In particular, the USF team discovered that a combination of human umbilical cord blood cells (hUBCs) and granulocyte colony stimulating factor (G-CSF), a growth factor, was more therapeutic than either administered alone, or each with saline, or saline alone.

“Chronic TBI is typically associated with major secondary molecular injuries, including chronic neuroinflammation, which not only contribute to the death of neuronal cells in the central nervous system, but also impede any natural repair mechanism,” said study lead author Cesar V. Borlongan, PhD, professor of neurosurgery and director of USF’s Center of Excellence for Aging and Brain Repair. “In our study, we used hUBCs and G-CSF alone and in combination. In previous studies, hUBCs have been shown to suppress inflammation, and G-CSF is currently being investigated as a potential therapeutic agent for patients with stroke or Alzheimer’s disease.”

In previous studies, Borlongan and his team showed that G-CSF can mobilize stem cells from bone marrow and induce them to home to and infiltrate injured tissues. While there, the cells promote neural cell self-repair. Cells from human umbilical cord blood also have the ability to suppress inflammation and promote cell growth.

“Our results showed that the combined therapy of hUBCs and G-CSF significantly reduced the TBI-induced loss of neuronal cells in the hippocampus,” said Borlongan. “Therapy with hUBCs and G-CSF alone or in combination produced beneficial results in animals with experimental TBI. G-CSF alone produced only short-lived benefits, while hUBCs alone afforded more robust and stable improvements. However, their combination offered the best motor improvement in the laboratory animals.”

“This outcome may indicate that the stem cells had more widespread biological action than the drug therapy,” said Paul R. Sanberg, distinguished professor at USF and principal investigator of the Department of Defense funded project. “Regardless, their combination had an apparent synergistic effect and resulted in the most effective amelioration of TBI-induced behavioral deficits.”

This particular study examined motor improvements or improvements in movement, but the USF group suggested that future combination therapy research should also include analysis of cognitive improvement in the laboratory animals with TBI.

In short, umbilical cord cell and growth factor treatments tested in animal models could offer hope for millions, including U.S. war veterans with traumatic brain injuries.

Post-script:  On Twitter, Alexey Bersenev made some very helpful observations about this paper.  In this paper, the authors used whole human umbilical cord blood.  They did not attempt to separate any of the different cell types from the cord blood.  Now when such whole blood is used, it is easy to assume that the stem cells in the blood that are doing the regenerative work.  However, as Alexey graciously pointed out, you cannot assume that the stem cells are responsible for the therapeutic effects for at least two main reasons:  1)  the number of stem cells in the cord blood is quite small relative to the other cells; 2) some of the non-stem cells in the blood turn out to have therapeutic effects.  See here and here.  I have seen some of these papers before, but I did not think much of them.  Therefore, until the cell populations in the umbilical cord blood are dissected out and studied, all we can say with any confidence is SOMETHING in the cord blood is conveying a therapeutic effect, but the identity of the therapeutic culprit remains unclear at this time.

Stem Cell Therapy Following Meniscus Knee Surgery Reduces Pain and Regenerates Meniscus


According to a new study published in the January issue of the Journal of Bone and Joint Surgery (JBJS), a single stem cell injection after meniscus knee surgery can provide pain relief and aid in meniscus regrowth.

In the US alone, over one million knee arthroscopy procedures are performed each year. These surgeries are usually prescribed to treat tears to the wedge-shaped piece of cartilage on either side of the knee called the “meniscus.” The meniscus acts as an important shock absorber between the thighbone (femur) and the shinbone (tibia) at the knee-joint.

Knee-Ligament-Pain-and-Strains-Meniscus-Tear-and-Pain

This novel study, “Adult Human Mesenchymal Stem Cells (MSC) Delivered via Intra-Articular Injection to the Knee, Following Partial Medial Meniscectomy,” examined 55 patients who had undergone a surgical removal or all or part of a torn meniscus (known as a partial medial meniscectomy). Each patient was randomly assigned to one of three treatment groups: Groups A, B and C. The 18 patients in group A received a “low-dose” injection of 50 million stem cells within seven to 10 days after their meniscus surgery. Another 18 patients in group B received a higher dose of 150 million stem cells seven to ten days after their knee surgery. The controls group consisted of 19 patients who received injections of sodium hyaluronate only (no stem cells). All patients were evaluated to determine the safety of the procedure, the degree of meniscus regeneration (i.e. with MRI and X-ray images), the overall condition of the knee-joint, and the clinical outcomes through two years. Most of the patients enrolled in this study had some arthritis, but patients with severe (level three or four) arthritis, were excluded from the study.

Most of the patients who had received stem cell treatments reported a significant reduction in pain. 24 percent of the patients in one MSC group and 6 percent of the other showed at least a 15 percent increase in meniscal volume at one year. Unfortunately, there was no additional increase in meniscal volume at year two.

“The results demonstrated that high doses of mesenchymal stem cells can be safely delivered in a concentrated manner to a knee-joint without abnormal tissue formation,” said lead study author C. Thomas Vangsness, Jr., MD. “No one has ever done that before.” In addition, “the patients with arthritis got strong improvement in pain” and some experienced meniscal regrowth.

The key findings of this study are that there no abnormal (ectopic) tissue formation or “clinically important” safety issues identified. Also, 24 percent of the patients in the low-dose injection group (A) and six percent of the high-dose injection group (B) at one year showed “significantly increased meniscal volume,” as determined by an MRI, and this increase did not continue into the second year, but remained stable (should future studies try a second injection of MSCs?). Third, none of the patients in the control group (non-MSC group) showed significant meniscus regrowth. Finally, patients with osteoarthritis experienced a reduction in pain in the stem cell treatment groups, but there was no reduction in pain in the control (non-MSC group).

“The results of this study suggest that mesenchymal stem cells have the potential to improve the overall condition of the knee joint,” said Dr. Vangsness. “I am very excited and encouraged” by the results. With the success of a single injection, “it begs the question: What if we give a series of injections?”

Turning Stem Cells into Drug Factories


Wouldn’t it be nice to have cells that express the right molecules at the right place and the right time to augment or even initiate healing?

Researchers at the Brigham and Women’s Hospital and Harvard Stem Cell Institute have inserted modified messenger RNA to induce mesenchymal stem cells to produce adhesive proteins  (PSGL-1)and secrete interleukin-10, a molecule that suppresses inflammation. When injected into the bloodstream of mice, these modified stem cells home to the right location, stick to that site, and secrete interleukin-10 (IL-10) to suppress inflammation.

Improving MSC therapeutic potential viamRNA transfection with homing ligands and immunomodulatory factors. Illustration of (A) mRNA-engineered MSCs that express a combination of homing ligands (PSGL-1 and SLeX) and an immunomodulatory factor (IL-10), and (B) targeting mRNA-engineered MSCs to site of inflammation.
Improving MSC therapeutic potential viamRNA transfection with homing ligands and immunomodulatory factors. Illustration of (A) mRNA-engineered MSCs that express a combination of homing ligands (PSGL-1 and SLeX) and an immunomodulatory factor (IL-10), and (B) targeting mRNA-engineered MSCs to site of inflammation.

Jeffrey Karp, Harvard Stem Cell Institute principal faculty member and leader of this research, said this about this work: “If you think of a cell as a drug factory, what we’re doing is targeting cell-based, drug factories to damaged tissues, where the cells can produce drugs at high enough levels to have a therapeutic effect.”

Karp’s paper reports a proof-of-principle study has piqued the interest of several biotechnology companies, since it has the potential to target biological drug to disease sites. While ranked as the top sellers in the drug industry, biological drugs are still challenging to use. Karp’s approach might improve the clinical applications of biological drugs and improve the somewhat mixed results of clinical trials with mesenchymal stem cells.

Mesenchymal stem cells (MSCs) have emerged as one of the favorite sources for stem cell therapies. The attractiveness of MSCs largely lies with their availability, since they are found in bone marrow, fat, liver, muscle, and many other places. Secondly, MSCs can be grown in culture for a limited period of time without a great deal of difficulty. Third, MSCs tend to be ignored by the immune system when injected. For these reasons, MSCs have been used in many clinical trials, and they appear to be quite safe to use.

To genetically modify MSCs, Karp and his co-workers made chemically modified messenger RNAs (mRNAs) whose bases differed slightly from natural mRNAs. These chemical modifications did not affect the recognition of the mRNA by the protein synthesis machinery of the MSCs, but did affect the recognition of these mRNAs by those enzymes that degrade mRNAs. Therefore, these synthetic mRNAs are very long-lived and the transfected cells end up making the proteins encoded by these mRNAs for a very long time. RNA transfection does not modify the genome of the host cells, and this makes it a very safe procedure, since the engineered cells will express the desired protein for some time, but not indefinitely.

The mRNAs introduced into the cultured MSCs included mRNAs that encode the IL-10 protein, which is cytokine that suppresses inflammation, the PSGL-1 protein, a cell-surface protein that sticks to the P-and E-selectin receptors, and the Fut7 gene product.  FUT7 encodes an enzyme called fucosyltransferase 7, which adds a sugar called “fucose” to the PSGL-1 protein and without this sugar, PSGL-1 cannot bind to the selectins.  Selectins are stored by cells and during inflammation, they are sent to the cell surface where they can bind cells and keep them there to mediate inflammation.  By expressing PSGL-1 in the MSCs, Karp and his group hoped to that the engineered MSCs would bind to the surfaces of blood vessels and not be washed out.

e-selectin_binding

Oren Levy, lead author of this paper, said, “This opens the door to thinking of messenger RNA transfection of cell populations as next generation therapeutics in the clinic, as they get around some of the delivery challenges that have been encountered with biological agents.”

A problem that constantly troubles clinical trials that use MSCs is that they are rapidly cleared from the bloodstream within a few hours or days after they are introduced. The Harvard team showed that rapid targeting of MSCs to inflamed tissue produced a therapeutic effect despite rapid clearance of the MSCs.

Karp and his colleagues would like to extend the lifespan of these cells in the bloodstream and they are presently experimenting with new synthetic mRNAs that encode pro-survival factors.

“We’ve interested to explore the platform nature of this approach and see what potential limitations it may have or how far we can actually push it. Potentially we can simultaneously deliver proteins that have synergistic therapeutic impacts,” said Weian Zhao, another author of this paper.