Orthopedic Regeneration With a Combination of Stem Cells, Gene Therapy, and Tissue Engineering


A Duke University research team has combined synthetic scaffolding materials with gene delivery techniques to generate replacement cartilage precisely where it’s needed in the body.

The ingenious strategy utilized by this research project circumvents the need for large quantities of growth factors, which are expensive and difficult to apply after implantation. The Duke team led by Farshid Guilak, director of orthopedic research at Duke University Medical Center, used gene therapy to make stem cells that synthesize their own growth factors.

In brief, Guilak and his collaborators used genetically engineered viruses to transfer genes to stem cells embedded in a synthetic matrix. Upon infection, the stem cells grew and differentiated as needed, but the scaffolding provided the necessary structural cues for the stem cells to move to the proper configuration and form cartilage with the proper shape and biomechanical properties.

Guilak has devoted several years to developing biodegradable synthetic scaffolds that mimic the mechanical properties of cartilage. After testing many different scaffolds, he settled on a 3D woven poly(ε-caprolactone) scaffold, which is completely biodegradable and provides an excellent structural matrix for the synthesis of cartilage.  However, an additional challenge for engineering good cartilage is to coax stem cells embed themselves in the scaffold while differentiating into cartilage-making cells, known as chondrocytes, after the scaffold has been implanted into a living organism.

One widely used strategy is to treat the stem cells with growth factors to induce chrondrocyte formation and cartilage production. Such cartilage can be implanted after it has been grown in the laboratory. However, this approach has some inherent limitations.

Guilak explained that “a major limitation in engineering tissue replacements has been the difficulty in delivering growth factors to the stem cells once they are implanted in the body.” Guilak continued: “There’s a limited amount of growth factor that you can put into the scaffolding, and once it’s released, it’s all gone. We need a method for long-term delivery of growth factors, and that’s where the gene therapy comes in.”

To tackle this perennial problem, Guilak tapped a talented colleague of his, Charles Gersbach, an assistant professor of biomedical engineering, who happens to also be a gene therapy expert.

Gersbach looked at the tissue engineering problem in an entirely new way and suggested that if the mountain will not come to Mohammed (that is to say if the growth factors cannot be given to stem cells after implantation), then Mohammed should grow his own mountain (the stem cells should be genetically engineered to make their own growth factors). Unfortunately, the conventional gene therapy methods are too complex to be commercially feasible. Typically, stem cells are collected, infected with genetically modified viruses that introduces new genes into them, grown to large numbers, and applied to synthetic cartilage scaffolds and implanted into the patient. Sounds like a headache? That’s because it is.

Fortunately, Gersbach had a slick gene therapy trick up his lab coat sleeve: “There are a few challenges with that process, one of them being that there are way too many extra steps,” said Gersbach. “So we turned to a technique I had previously developed that affixes the viruses that deliver the new genes onto a material’s surface.”

A microscopic view using electron microscopy of human stem cells and viral gene carriers adhering to the fibers of a polymer scaffold.  Photo source:  http://www.pratt.duke.edu/news/gene-therapy-might-grow-replacement-tissue-inside-body.
A microscopic view using electron microscopy of human stem cells and viral gene carriers adhering to the fibers of a polymer scaffold. Photo source: http://www.pratt.duke.edu/news/gene-therapy-might-grow-replacement-tissue-inside-body.

This new study combines Gersbach’s gene therapy technique—dubbed biomaterial-mediated gene delivery—to induce those human mesenchymal stem cells embedded in Guilak’s synthetic cartilage scaffolding to produce growth factor proteins (in particular a molecule called transforming growth factor β3  or TGF-β3). Based on the results of their experiments, the technique works and that the resulting synthetic, composite cartilage-like material is at least as good biochemically and biomechanically as if the growth factors were introduced in the laboratory.

“We want the new cartilage to form in and around the synthetic scaffold at a rate that can match or exceed the scaffold’s degradation,” said Jonathan Brunger, a graduate student who has spent time in both Guilak’s and Gersbach’s laboratories developing and testing the new technique. “So while the stem cells are making new tissue (in the body), the scaffold can withstand the load of the joint. In the ideal case, one would eventually end up with a viable cartilage tissue substitute replacing the synthetic material.”

This particular study examines cartilage regeneration, but Guilak and Gersbach hope that their technique could be applied to the regeneration of many different kinds of tissues, especially orthopaedic tissues such as tendons, ligaments and bones. Also, because the platform comes ready to use with any stem cell, it presents an important step toward commercialization.

“One of the advantages of our method is getting rid of the growth factor delivery, which is expensive and unstable, and replacing it with scaffolding functionalized with the viral gene carrier,” said Gersbach. “The virus-laden scaffolding could be mass-produced and just sitting in a clinic ready to go. We hope this gets us one step closer to a translatable product.”

Citation: “Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage.” Brunger, J.M., Huynh, N.P.T., Guenther, C.M., Perez-Pinera, P., Moutos, F.T., Sanchez-Adams, J., Gersbach C.A., and Guilak F. PNAS Plus, 2014. DOI: 10.1073/pnas.1321744111/-/DCSupplemental

Clinical Study Evaluates Healing of Knee Cartilage With Stem Cells


The biotechnology company InGeneron will test its patented Transpose RT system in a clinical study that examined the ability of regenerative cells from a patient’s own fat to enhance cartilage healing after knee surgery.

Qualified patients are being recruited through the Fondren Orthopedic Group in Houston. According to the American Orthopedic Society for Sports Medicine, over 4 million knee arthroscopies are performed worldwide each year. Damaged knee cartilage is very difficult to treat and can lead to chronic pain and long-term disability.

Robert Burke, who is serving as the principal investigator of this clinical study, is an orthopedic surgeon with the Fondren Orthopedic Group in Houston. Burke thinks that stem cells taken from a patient’s own fat may enhance cartilage healing. He studied adding patient-derived regenerative cells to the knee during arthroscopic surgery for particular patients, and compared them to patients who had arthroscopic surgery without added fat-derived stem cells.

Arthroscopic surgery is a common procedure is commonly used to treat damaged cartilage, and the patients who had received arthroscopic surgery were randomly chose to either receive fat-derived stem cells or not receive them. Burke, will then monitor these patients for the next 12 months after surgery to determine if the added cells improved cartilage healing.

According to Burke, “Articular cartilage, the smooth surface covering the joints at the ends of bones, has no good way of healing on its own. The body doesn’t create enough new cartilage of the same type to repair the damage.” Better treatments would use various techniques to help the body make new cartilage.

“Stem cells and other regenerative cells that we can obtain fat have the potential to do that,” said Burke. Such regenerative cells can divide and mature to form several types of cells and tissues. and are found in multiple places in the body. Fat that lies just below the skin is one of the easiest places to obtain stem cells.

The InGeneron Transpose RT System uses a small amount of fat, which is removed and processed to separate out the regenerative cells. The separated adipose tissue-derived mesenchymal stem cells are then immediately placed into the area of damaged cartilage during knee surgery. Once in the knee, these cells may divide to make new cartilage cells.

This kind of biological activity has been seen in laboratory studies and veterinary medicine. However, Burke’s study will be one of the first to test the technology in humans for treating cartilage damage. Like other types of stem cell-based therapies, the treatment is not currently licensed for human use in the United States but it is registered in Europe, Mexico, and other countries. Following the Texas Medical Board’s rules about the use of stem cells for treatment, this study is under the supervision of the research review board at Texas Orthopedic Hospital, where all of the patients will undergo surgeries.

This is a two-year study.

Improving Cartilage Production By Stem Cells


To repair cartilage, surgeons typically take a piece of cartilage from another part of the injured joint and patch the damaged area, this procedure depends on damaging otherwise healthy cartilage. Also, such autotransplantation procedures are little protection against age-dependent cartilage degeneration.

There must be a better way. Bioengineers want to discover more innovative ways to grow cartilage from patient’s own stem cells. A new study from the University of Pennsylvania might make such a wish come true.

This research, comes from the laboratories of Associate professors Jason Burdick and Robert Mauck.

“The broad picture is trying to develop new therapies to replace cartilage tissue, starting with focal defects – things like sports injuries – and then hopefully moving toward surface replacement for cartilage degradation that comes with aging. Here, we’re trying to figure the right environment for adult stem cells to produce the best cartilage,” said Burdick.

Why use stem cells to make cartilage? Mauck explained, “As we age, the health and vitality of cartilage cells declines so the efficacy of any repair with adult chondrocytes is actually quite low. Stem cells, which retain this vital capacity, are therefore ideal.”

Burdick and his colleagues have long studied mesenchymal stem cells (MSCs), a type of adult stem cell found in bone marrow and many other tissues as well that can differentiate into bone, cartilage and fat. Burdick’s laboratory has been investigating the microenvironmental signals that direct MSCs to differentiate into chondrocytes (cartilage-making cells).

chondrocytes
chondrocytes

A recent paper from Burdick’s group investigated the right conditions for inducing fat cell or bone cell differentiation of MSCs while encapsulated in hydrogels, which are polymer networks that simulate some of the environmental conditions as which stem cells naturally grow (see Guvendiren M, Burdick JA. Curr Opin Biotechnol. 2013 Mar 29. pii: S0958-1669(13)00066-9. doi: 10.1016/j.copbio.2013.03.009). The first step in growing new cartilage is initiating cartilage production or chondrogenesis. To do this, you must convince the MSCs to differentiate into chondrocytes, the cells that make cartilage. Chondrocytes secrete the spongy matrix of collagen and acidic sugars that cushion joints. One challenge in promoting MSC differentiation into chondrocytes is that chondrocyte density in adult tissue is rather low. However, cartilage production requires that the chondrocytes be in rather close proximity.

Burdick explained: “In typical hydrogels used in cartilage tissue engineering, we’re spacing cells apart so they’re losing that initial signal and interaction. That’s when we started thinking about cadherins, which are molecules that these cells used to interact with each other, particularly at the point they first become chondrocytes.”

Desmosomes can be visualized as rivets through the plasma membrane of adjacent cells. Intermediate filaments composed of keratin or desmin are attached to membrane-associated attachment proteins that form a dense plaque on the cytoplasmic face of the membrane. Cadherin molecules form the actual anchor by attaching to the cytoplasmic plaque, extending through the membrane and binding strongly to cadherins coming through the membrane of the adjacent cell.
Desmosomes can be visualized as rivets through the plasma membrane of adjacent cells. Intermediate filaments composed of keratin or desmin are attached to membrane-associated attachment proteins that form a dense plaque on the cytoplasmic face of the membrane. Cadherin molecules form the actual anchor by attaching to the cytoplasmic plaque, extending through the membrane and binding strongly to cadherins coming through the membrane of the adjacent cell.

In order to simulate this microenvironment, Burdick and his collaborators and colleagues used a peptide sequence that mimics these cadherin interactions and bound them to the hydrogels that were then used to encapsulate the MSCs.

According to Mauck, “While the direct link between cadherins and chondrogenesis is not completely understood, what’s known is that if you enhance these interactions early during tissue formation, you can make more cartilage, and, if you block them, you get very poor cartilage formation. What this gel does is trick the cells into think it’s got friends nearby.”

See L Bian, et al., PNAS 2013; DOI:10.1073/pnas.1214100110.