The Speed of the Cell Cycle Makes Aging Cells Young Again


When Shinya Yamanaka and his colleagues at the RIKEN Institute discovered a way to reprogram adult cells into embryonic stem cell-like cells, known as induced pluripotent stem cells (iPSCs), they overthrew a core understanding of cell and developmental biology; namely that once cells become committed to a particular cell fate, they irreversibly remain committed to that cell fate.

Most of the work on iPSCs has examined how to increase the efficiency and safety of this reprogramming procedure. The slowness and inefficiency of this process has frustrated stem cell scientists for some time. Even though some progress has been made at increasing the efficiency of the reprogramming process, the “nuts and bolts” of why this procedure is so slow has remained unclear.

However a recent paper from the laboratory of Shangqin Guo at the Yale School of Medicine has revealed a key component of why this procedure is so slow. That component is the speed of the cell cycle or the length of time the cell takes to divide.

Fast-growing cells have lower barriers to keeping the cell committed to a particular cell fate. Thus faster-growing cells are more easily coaxed into being reprogrammed into pluripotency (the ability to differentiate into all adult cell types).

Guo’s research team examined blood cell-forming stem cells in bone marrow. Normally these stem cells are multipotent, which means that they can differentiate into a limited number of adult cell types. The particular type of blood cells that the progeny of these stem cells differentiate into depends on the particular types of growth factors available to the cells.

Guo and others found that these fast growing bone marrow stem cells could be reprogrammed in as little as four cell divisions.  Ultrafast cell cycle is a key feature of these “privileged cells” that can be reprogrammed to efficiently.  Slower-growing stem cells could not be reprogrammed nearly as fast. Thus the length of the cell cycle seemed to be the key to the speed with which cells could be reprogrammed to iPSCs.

This study also has implications for several other applications, besides making individualized iPSCs for patients. Several human diseases are associated with abnormalities in the establishment of proper cell fates and abnormalities in the cell cycle. Therefore, Guo’s paper could provide insights into why certain genetic diseases affect cells the way they do.

Using Bone Marrow Stem Cells to Reprogram Neurons and Regenerate the Retina


Spanish researchers from the Center for Genomic Regulation (CGR) have regenerated the retina in mice by reprogramming neurons with bone marrow stem cells.

Cell reprogramming normally uses genetic engineering techniques that introduces genes into cells that push them into another cell fate without taking them through an embryonic-like state. One strategy for reprogramming cells fuses those cells with other cells that express genes that drive the fused cell into a different cell fate.

Pia Cosma and her team have used cell fusion to reprogram retinal neurons in mice. The mechanism consisted of introducing bone marrow stem cells into the damaged retina. The transplanted stem cells fused with existing retinal neurons, which conveyed to these retinal neurons the ability to regenerate the retina.

“For the first time we have managed to regenerate the retina and reprogram its neurons through in vivo cell fusion. We have identified a signaling pathway that, once activated, allows the neurons to be reprogrammed through their fusion with bone marrow cells,” said Pia Cosma, who is the head of the Reprogramming and Regeneration group at the CGR and ICREA (Institució Catalana de Recerca i Estudis Avançats) research professor.

Daniela Sanges, first author or the work and postdoctoral researcher in Pia Cosma’s laboratory, said, “This discovery is important not only because of the possible medical applications for retinal regeneration but also for the possible regeneration of other nervous tissues.”

The study demonstrates that the regeneration of nervous tissue by means of cell fusion is possible in mammals and describes this new technique as a potential mechanism for the regeneration of more complex nervous tissue.

This research is in the very early stages but already there are laboratories interested in being able to continue the work and take it to a more applied level.

Daniela Sanges, Neus Romo, Giacoma Simonte, Umberto Di Vicino, Ariadna Diaz Tahoces, Eduardo Fernández, Maria Pia Cosma. Wnt/β-Catenin Signaling Triggers Neuron Reprogramming and Regeneration in the Mouse Retina . Cell Reports – 25 July 2013 (Vol. 4, Issue 2, pp. 271-286)