Artificial Skin Created Using Umbilical Cord Stem Cells


Major burn patients usually must wait weeks for artificial skin to be grown in the laboratory to replace their damaged skin, buy a Spanish laboratory has developed new protocols and techniques that accelerate the growth of artificial skin from umbilical cord stem cells. Such laboratory-grown skin can be frozen and stored in tissue banks and used when needed.

Growing skin in the laboratory requires the acquisition of keratinocytes, those cells that compose the skin and the mucosal covering inside our mouths.  Keratinocytes can be cultured in the laboratory, but they have a long cell cycle, which means that they take a really long time to divide.  Consequently, cell cultures of keratinocytes tend to take a very long time to grow.

Keratinocytes in culture
Keratinocytes in culture

As they grow, the keratinocytes respond to connective tissue underneath them to receive the cues that tell them how to connect with each other and form either skin or oral mucosa.  In patients with severe burns, however, the underlying connective tissue is also often damaged.  Therefore, finding a way to not only accelerate the growth of cultured keratinocytes, but also to provide the underlying structure that directs the cells to form a proper epithelium is essential.

Remember that severe burn patients are living on borrowed time.  Without a proper skin covering, water loss is severe and dehydration is a genuine threat.  Also, infection is another looming threat.  Therefore, the treatment of a burn patient is a race against time.

Because umbilical cord stem cells grow quickly and effectively in culture, they might be able to differentiate into keratinocytes and form the structures associated with oral mucosa and skin.

University of Granada researchers used a new type of epithelial covering to grow their artificial skin in addition to a biomaterial made of fibrin (the stiff, cable-like protein that forms clots) and agarose to provide the underlying connective tissue. In case you might need a refresher, an epithelium refers to a layer of cells that have distinct connects with each other and form a discrete layer. Epithelia can form single or multiple layers and can be composed of long, skinny cells, short, flat cells, or boxy cells.  An epithelium is a membrane-like tissue composed of one or more layers of cells separated by very little intervening substances.  Epithelia cover most internal and external surfaces of the body and its organs.

Previous work from this same research group showed that stem cells from Wharton’s jelly (connective tissue within the umbilical cord), could be converted into epithelial cells. This current study confirms and extends this previous work and applies it to growing skin, and oral mucosa.

“Creating this new type of skin suing stem cells, which can be stored in tissue banks, mains that it can be used instantly when injuries are caused, and which would bring the application of artificial skin forward many weeks,” said Antonio Campos, professor of histology and one of the authors of this study.

By growing the Wharton’s jelly stem cells on their engineered matrix in a three-dimensional culture system, Campos and his colleagues saw that the stem cells stratified (formed layers), and expressed a bunch of genes that are peculiar to skin and other types of epithelia that cover surfaces (e.g., cytokeratins 1, 4, 8, and 13; plakoglobin, filaggrin, and involucrin).  When examined with an electron microscope, the cells had truly formed the kinds of tight connections and junctions that are so common to skin epithelia.

Electron microscopy analysis of controls and three-dimensional bioactive models of H-hOM and H-hS. SEM images (top) corresponding to N-hOM and N-hS controls showed a tight superficial layer of flat polygonal cells with desquamation signs in which cells were covering the entire surface, whereas samples kept in vitro for 2 weeks showed immature differentiation patterns, and samples implanted in vivo for 40 days tended to resemble the structure of the native control tissues, with flattened cells and evident signs of desquamation. Scale bars = 50 μm. TEM samples (bottom) were analyzed after 40 days of in vivo implantation and demonstrated that in vivo-implanted tissues were mature and well-differentiated, with numerous intercellular junctions, abundant cell organelles, and a collagen-rich stroma. Scale bars = 1 μm. Abbreviations: H-hOM, heterotypical human oral mucosa; H-hS, heterotypical human skin; N-hOM, native human oral mucosa; N-hS, native human skin; SEM, scanning electron microscopy; TEM, transmission electron microscopy.
Electron microscopy analysis of controls and three-dimensional bioactive models of H-hOM and H-hS. SEM images (top) corresponding to N-hOM and N-hS controls showed a tight superficial layer of flat polygonal cells with desquamation signs in which cells were covering the entire surface, whereas samples kept in vitro for 2 weeks showed immature differentiation patterns, and samples implanted in vivo for 40 days tended to resemble the structure of the native control tissues, with flattened cells and evident signs of desquamation. Scale bars = 50 μm. TEM samples (bottom) were analyzed after 40 days of in vivo implantation and demonstrated that in vivo-implanted tissues were mature and well-differentiated, with numerous intercellular junctions, abundant cell organelles, and a collagen-rich stroma. Scale bars = 1 μm. Abbreviations: H-hOM, heterotypical human oral mucosa; H-hS, heterotypical human skin; N-hOM, native human oral mucosa; N-hS, native human skin; SEM, scanning electron microscopy; TEM, transmission electron microscopy.

The authors conclude the article with this statement: “All these findings support the idea that HWJSCs could be useful for the development of human skin and oral mucosa tissues for clinical use in patients with large skin and oral mucosa injuries.”  Think of it folks – new skin for burn patients, quickly, safely and ethically.

Now back to reality – this is exciting, but it is a a pre-clinical study.  Larger animals studies must show the efficacy and safety of this protocol before human trials can be considered, but you must admit that it looks exciting; and without killing any embryos.

See I. Garzón, et al., Stem Cells Trans MedAugust 2013 vol. 2 no. 8625-632.

Primed Fat-Based Stem Cells Enhance Heart Muscle Proliferation


A Dutch group from the University of Groningen has shown that fat-based stem cells can enhance the proliferation of cultured heart muscle cells. The stem cells used in these experiments were preconditioned and this pretreatment greatly enhanced their ability to activate heart muscle cells.

This paper, by Ewa Przybyt, Guido Krenning, Marja Brinker, and Martin Harmsen was published in the Journal of Translational Medicine. To begin, Przybyt and others extracted human adipose derived stromal cells (ADSC) from fat tissue extracted from human liposuction surgeries. To do this, they digested the fat with enzymes, centrifuged and washed it, and then grew the remaining cells in culture.

Then they used rat neonatal heart muscle cells and infected them with viruses that causes them to glow when certain types of light was shined on them. Then Przybyt and others co-cultured these rat heart cells with human ADSCs.

In the first experiment, the ADSCs were treated with drugs to prevent them from dividing and then they were cultured with rat heart cells in a one-to-one ratio. The heart muscle cells grew faster with the ADSCs than they did without them. To determine if cell-cell contact was required for this stimulation, they used the culture medium from ADSCs and grew the heart cell on this culture medium. Once again, the heart cells grew faster with the ADSC culture medium than without it. These results suggest that the ADSCs stimulate heart cell proliferation by secreting factors that activate heart cell division.

Another experiment subjected the cultured heart cells to the types of conditions they might experience inside the heart after a heart attack. For example, heart cells were subjected to low oxygen tensions (2% oxygen), and inflammation – two conditions found within the heart after a heart attack. These treatments slowed heart cell growth, but this heart cell growth was restored by adding the growth medium of ADSCs. Even more remarkably, when ADSCs were grown in low-oxygen conditions or treated with inflammatory molecules (tumor necrosis factor-alpha or interleukin-1beta), the culture medium increased the fractions of cells that grew. Therefore, ADSCs secrete molecules that increase heart muscle cell proliferation, and increase proliferation even more after the ADSCs are preconditioned by either low oxygen tensions or inflammation.

In the next experiment, Przybyt and others examined the molecules secreted by ADSCs under normal or low-oxygen tensions to ascertain what secreted molecules stimulated heart cell growth. It was clear that the production of a small protein called interleukin-6 was greatly upregulated.

Could interleukin-6 account for the increased proliferation of heart cells? Another experiment showed that the answer was yes. Cultured heart cells treated with interleukin-6 showed increased proliferation, and when antibodies against interleukin-6 were used to prevent interleukin-6 from binding to the heart cells, these antibodies abrogated the effects of interleukin-6.

Przybyt and others then took these results one step further. Since the signaling pathways used by interleukin-6 are well-known, they examined these pathways. Now interleukin-6 signals through pathways, once of which enhances cell survival, and another pathway that stimulated cell proliferation. The cell proliferation pathway uses a protein called “STAT3” and the survival function uses a protein called “Akt.” Both pathways were activated by interleukin-6. Also, the culture medium of ADSCs that were treated with interleukin-6 induced the interleukin-6 receptor proteins (gp80 and gp130) in cultured heart muscle cells. This gives heart muscle cells a greater capacity to respond secreted interleukin-6.

This paper shows that stromal stem cells from fat has the capacity, in culture, to activate the growth of cultured heart muscle cells. Also, if these cells were preconditioned with low oxygen tensions or pro-inflammatory molecules, those fat-based stem cells secreted interleukin-6, which enhanced heart muscle cell survival, and proliferation, even if those heart muscle cells are exposed to low-oxygen tensions or inflammatory molecules.

This suggests that preconditioned stem cells from fat might be able to protect heart muscle cells and augment heart healing after a heart attack. Alternatively, cardiac administration of interleukin-6 after a heart attack might prove even more effective to protect heart muscle cells and stimulate heart muscle cell proliferation. Human trials anyone?

Faulty Stem Cell Regulation Contributes to Down Syndrome Deficits


People who have three copies of chromosome 21 have a genetic condition known as Down Syndrome (DS). In particular, patients who have an extra copy of a small portion of chromosome 21 (q22.13–q22.2) known as the Down Syndrome Critical Region or DSCR have the symptoms of DS. The DSCR contains at least 30 genes or so and some of them tightly correlate to the pathology of DS. For example, the APP (amyloid protein precursor) gene accounts for the accumulation of amyloid protein in the brains of DS patients. DS patients develop Alzheimer disease-like pathology by the fourth decade of life, and the APP protein is overexpressed in the adult Down syndrome brain. Another gene found in the DSCR called DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) encodes a member of the dual-specificity tyrosine phosphorylation-regulated kinase family and this protein participates in various cellular processes. Overproduction of DYRK1A seems to cause the abnormal brain development observed in DS babies.

Another gene found in the DSCR is called USP16 and this gene encodes a protein that removes small peptides called ubiquitin from other proteins. Ubiquitin attachment marks a protein for degradation, but it can also mark a protein to do a specific job. USP16 removes ubiquitin an either stops the protein from acting or prevents the proteins from being degraded. Overexpression of UPS16 occurs in DS patients, and too much UPS16 protein affects stem cell function.

Michael Clarke, professor of cancer biology at the Stanford University School of Medicine, said, “There appear to be defects in the stem cells in all the tissues we tested, including the brain.” Clarke continued, “We believe USP16 overexpression is a major contributor to the neurological deficits seen in Down Syndrome.” Clarke’s laboratory conducted their experiments in mouse and human cells.

Additional work by Clarke and his colleagues showed that downregulation of USP16 partially rescues the stem cell proliferation defects found in DS patients.

Clarke’s study suggests that drugs that reduce the activity of USP16 could reduce the some of the most profound deficits in DS patients.

This paper also details some of the pathological mechanisms of DS. DS patients age faster and exhibit early Alzheimer’s disease. The reason for this seems to rely on the overexpression of UPS16, which accelerates the rate at which stem cells are used during early development. This accelerated rate of stem cell use burns out and exhausts the stem cell reserves and, consequently, the brains age faster and are susceptible to the early onset of neurodegenerative diseases.

After examining laboratory mice that had a rodent form of DS, Clarke and his coworkers turned their attention to USP16 overexpression in human cells. Clarke collaborated with a Stanford University neurosurgeon named Samuel Cheshier and their study showed that skin cells from normal volunteers grew much more slowly when the Usp16 gene was overexpressed. Furthermore, neural stem cells, which normally clump into little balls of cells called neurospheres, no longer formed these structures when Usp16 was overexpressed in them.

a, Proliferation analysis, as well as SA-βgal and p16Ink4a staining, of three control and four Down’s syndrome (DS) human fibroblast cultures show growth impairment and senescence of Down’s syndrome cells. b, c, Lentiviral-induced overexpression of USP16 decreases the proliferation of two different control fibroblast lines (b), whereas downregulation of USP16 in Down’s syndrome fibroblasts promotes proliferation (c). d, Overexpression of USP16 reduces the formation of neurospheres derived from human adult SVZ cells. The right panel quantifies the number of spheres in the first and second passages. P < 0.0001. All the experiments were replicated at least twice. Luc, luciferase.
a, Proliferation analysis, as well as SA-βgal and p16Ink4a staining, of three control and four Down’s syndrome (DS) human fibroblast cultures show growth impairment and senescence of Down’s syndrome cells. b, c, Lentiviral-induced overexpression of USP16 decreases the proliferation of two different control fibroblast lines (b), whereas downregulation of USP16 in Down’s syndrome fibroblasts promotes proliferation (c). d, Overexpression of USP16 reduces the formation of neurospheres derived from human adult SVZ cells. The right panel quantifies the number of spheres in the first and second passages. P < 0.0001. All the experiments were replicated at least twice. Luc, luciferase.

Conversely, when cultured cells from DS patients had their USP16 activity levels knocked down, their proliferation defects disappeared. In Clarke’s words, “This gene is clearly regulating processes that are central to aging in mice and humans, and stem cells are severely compromised. Reducing Usp16 expression gives an unambiguous rescue at the stem cell level. The fact that it’s also involved in this human disorder highlights how critical stem cells are to our well-being.”

Tumor Suppressor Gene is Required For Neural Stem Cells to Differentiate into Mature Neurons


Cancer cells form when healthy cells accumulate mutations that either inactivate tumor suppressor genes or activate proto-oncogenes. Tumor suppressor genes work inside cells to put the brakes on cell proliferation. Proto-oncogenes work to drive cell proliferation. Loss-of-function mutations in tumor suppressor genes remove controls on cell proliferation, which causes cells to divide uncontrollably. Conversely activating mutations in proto-oncogenes removes the controls on the activity of proto-oncogenes, converting them into oncogenes and driving the cell to divide uncontrollably. If a cell accumulates enough of these mutations, they can grow in such an uncontrollable fashion that they start to gain extra chromosomes or pieces of chromosomes, which contributes to the genetic abnormality of the cell. Accumulation of more mutations allows the cell to break free from the original tumorous mass and spread to other tissues.

There are over 35 identified tumor suppressor genes and one of these, CHD5, has another role besides controlling cell proliferation. Researchers at Karolinska Institutet in Stockholm, Swede, in collaboration with other laboratories at Trinity College in Dublin and BRIC in Copenhagen has established a vital role for CHD5 in normal nervous development.

Once stem cells approach the final phase of differentiation into neurons, the CHD5 protein is made at high levels. CHD5 reshapes the chromatin structure into which DNA is packaged in cells, and in doing so, it facilitates or obstructs the expression of other genes.

Ulrika Nyman, postdoc researcher in Johan Holmberg’s laboratory, said that when they switched of CHD5 expression in stem cells from mouse embryos at the time when the brain develops, the CHD5-less stem cells were unable to turn off those genes that are usually expressed in other tissues, and equally unable to turn on those genes necessary for making mature neurons. Thus these CHD5-less stem cells were trapped in a nether-state between stem cells and neurons.

CHD5 function in stem cell differentiationretinoic

The gene that encodes the CHD5 protein is found on chromosome 1 (1p36) and it is lost in several different cancers, in particular neuroblastomas, a disease found mainly in children and is thought to arise during the development of the peripheral nervous system.

Neuroblastomas that lack this part of chromosome 1 that contains the CHD5 gene are usually more aggressive and more rapidly fatal.

Treatment with retinoic acid forces immature nerve cells and some neuroblastomas to mature into specialized nerve cells. However, when workers from Holmberg’s laboratory prevented neuroblastomas from turning up their expression of CHD5, they no longer responded to retinoic acid treatment.

Holmberg explained, “In the absence of CHD5, neural tumor cells cannot mature into harmless neurons, but continue to divide, making the tumor more malignant and much harder to treat. We now hope to be able to restore the ability to upregulate CHD5 in aggressive tumor cells and make them mature into harmless nerve cells.”

How Pluripotent Stem Cells Stay Themselves


Embryonic stem cells (ESCs) have an uncanny ability to perpetually divide in culture and differentiate into any cell type found in the adult body. The internal switches inside ESCs that keep them pluripotent or drive them to differentiate are incompletely understood at this. However new work from the Carnegie Institution for Science has opened a new doorway into this event.

Yixian Zheng and his research team has focused on the process by which ESCs stay in their pluripotent state. There are three protein networks within the cell that direct the self-renewal and differentiation aspects of cell behavior. These networks consist of 1) the pluripotent core, which includes the protein called Oct4 and its many co-workers; 2) the Myc-Arf network, which directs cell proliferation, and 3) the PRC2 or polycomb proteins, which repress genes necessary for differentiation. How these networks are integrated remains quite unclear. Zhen and his group have found a protein that seems to link all three of these networks together.

A protein called Utf1 seems to act as the cord that ties all three of these networks together. First, Utf1 limits the loading of PRC2 on the DNA and it also prevents PRC2 from modifying chromatin so that the DNA assumes a very tight, compact structure that prevents gene expression. Thus, Utf1 keeps the DNA somewhat poised and ready for gene expression, should the proper conditions come about that favor differentiation. Secondly,. for those genes that are not completely shut off by PRC2, Utf1 works through a protein complex called the DCP1a complex to degrade these mRNAs made these incompletely repressed genes. Finally, Utf1 downregulates the My-Afr feed pathway. The Myc and Arf work together to curtail cell proliferation, but the inhibition of this pathway ensures that the cell continues to divide properly.

According to Zheng, “We are slowly but surely growing to understand the physiology of embryonic stem cells. It is crucial that we continue to carrying out [sic] basic research on how these cells function.”

Zheng is a Howard Hughes Medical Institute Researcher at the National Institutes of Health and in the Department of Embryology at the Carnegie Institute for Science in Baltimore, Maryland.

This work was published in the journal Cell under the title, “Regulation of pluripotency and self-renewal of ESCs through epigenetic-threshold modulation and mRNA pruning.” Cell 2012 3:576.