Induced Pluripotent Stem Cells – Addressing Safety Concerns


In 2012, John B. Gurdon and Shinya Yamanaka won the Nobel Prize in Physiology or Medicine “for the discovery that mature cells can be reprogrammed to become pluripotent.” Since that time, induced pluripotent stem cells (iPSCs) have largely taken the stem cell scene by storm. Because of the ease with which iPSCs can be made from just about any mature cell type, and because they can be made so more cheaply and faster than embryonic stem cells, they are the perfect pluripotent stem cell for laboratory use. The additional advantage to iPSCs is that can instantly reflect the genetic defect of the patient from whom they are made. Therefore, they are provide excellent model systems for a variety of genetic diseases and provide a kind of “disease in a dish” system by which the cellular and molecular characteristics of a disease can be modeled in cell culture.

In addition to their experimental utility, many scientists have sought to promote iPSCs for clinical purposes. However, before iPSCs can be used in the clinic, their safety must be established beyond question. Despite their success in many animal models (most in rodents), the long-term safety of iPSC derivatives has yet to be firmly demonstrated.

To that end, three different experiments have added to our concerns about the safety of iPSCs. For these and other reasons, several scientists have hypothesized that if iPSCs derivatives are going to be used in a clinical setting, they will need to come from young, healthy donors. In particular, blood cells from umbilical cord blood can be matched to just about any tissue and can be easily converted into iPSCs. Therefore, allogeneic iPSC derivatives seem to be the best way to go about treating particular diseases.

That being said, there are three studies about the safety of iPSC derivatives that make important contributions to the debate.

The first study comes from the laboratory of Shoukhrat Mitalipov at the Oregon Health and Science University. Mitalipov and his team have examined the mitochondrial genomes of iPSCs made from older patients.

Mitochondria are small, vesicles surrounded by two membranes, within cells that are the energy-production structures of most cells (not bacteria). Mitochondria also contain their own DNA molecules that express a variety of mitochondrial-specific genes and their own bacterial-like ribosomes that synthesized the mRNAs made from those genes into proteins. However, the vast majority of mitochondrial proteins are encoded on genes housed in the nucleus.

Mutations in genes encoded by the mitochondrial genome are rather devastating and are responsible for several really nasty (albeit rare) genetic diseases. These mitochondrial genetic diseases include: Mitochondrial myopathy, diabetes and deafness, Leber’s hereditary optic neuropathy (includes visual loss beginning in young adulthood, progressive loss of central vision due to degeneration of the optic nerves and retina), Leigh syndrome subacute sclerosing encephalopathy (disease usually begins late in the first year of life, although onset may occur in adulthood; a rapid decline in function occurs and is marked by seizures, altered states of consciousness, dementia, ventilatory failure), neuropathy, ataxia, retinitis pigmentosa, and ptosis (progressive symptoms as described and dementia), Myoneurogenic gastrointestinal encephalopathy (gastrointestinal pseudo-obstruction and neuropathy), Myoclonic epilepsy with ragged red fibers (progressive myoclonic epilepsy, “Ragged Red Fibers” or clumps of diseased mitochondria accumulate in the muscle fiber, short stature, hearing loss, lactic acidosis, exercise intolerance), mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like symptoms (MELAS).

Mitochondrial DNA mutations have long been thought to be a driving force in aging and age-onset diseases. Therefore, if iPSCs are made from older patients, will their starting cells have these mitochondrial mutations?

Taoseng Huang from Cincinnati Children’s Hospital Medical Center said: “If you want to use iPS cells in a human, you must check for mutations in the mitochondrial genome. Every single cell can be different. Two cells next to each other could have different mutations or different percentages of mutations.”

In this study from Mitalipov’s laboratory, his team derived and sequenced 10 iPS clones from each patient tissue sample to get a better understanding of mitochondrial DNA mutations rates. They took samples of blood and skin samples from healthy subjects and patients with degenerative diseases, who ranged in age from 24-72 years old. In these pools of these sampled cells, the rate of mitochondrial DNA mutations was low.

20 iPS cell lines per patient were profiled. Ten of these lines were derived from skin cells and the other 10 were derived from blood cells. Sequencing of the mitochondrial genomes of the iPSC lines revealed higher numbers of mitochondrial DNA mutations, particularly in cells from patients older than 60 years old. Of the 130 iPSC lines analyzed, 80 percent of them showed mitochondrial mutations and higher percentages of the mitochondria per cell contained mutations.

Such mitochondrial mutations can seriously compromise the ability of derivatives of these iPSC lines to carry out their desired function. Mitalipov in his paper, which was published in Cell Stem Cell, 2016; DOI: 10.1016/j.stem.2016.2016.02.005, that all iPSC lines for use in human patients should be screened for mitochondrial mutations.

Graphical abstract-2

One feature not addressed by Mitalipov and his colleagues is whether or not cells that may not show the signs of aging should be used to derived iPSCs, such as particular bone dormant marrow stem cells.

If mitochondrial mutations aren’t bad enough Jennifer E. Phillips-Cremins and her coworkers at the University of Pennsylvania School of Engineering and Applied Science have found that the chromatin structures of iPSCs might prevent them from properly differentiating into particular derivatives.

As previously mentioned in other blog posts, the DNA in the nuclei of our cells is packaged into a compact structure known as chromatin. Chromatin helps cells express those genes it needs to express and shut down other genes whose expression is not needed.

Occasionally, iPSC lines show an inability to differentiate into particular cell types while others have the ability to differentiate into many cell types. According to this study by Phillips-Cremins and her team, defects in DNA packaging might explain these disparities in iPSC lines.

By using experimental and computational techniques, Phillips-Cremins and her graduate student Jonathan Beagan identified chromatin conformations in a variety of iPSC lines. The DNA topology of embryonic stem cells and neural stem cells were also analyzed as comparisons.

“We know there is a link between the topology of the genome and gene expression,” Jennifer Phillips-Cremins, said in a press release. “So this motivated us to explore how the genetic material is reconfigured in three dimensions inside the nucleus during the reprogramming of mature brain cells to pluripotency. We found evidence for sophisticated configurations that differ in important ways between iPS cells and embryonic stem cells.”

The three-dimensional DNA conformations of pluripotent stem cells are reorganized during differentiation. Phillips-Cremin and others discovered that when mature cells are reprogrammed to pluripotent cells, most pluripotency genes reconnect to their enhancers (which are crucial for their expression). However, when these same iPSCs are differentiated into neural progenitor cells, the interactions between pluripotency gene and their enhancers remain in some lines, which should not occur.

“We found marked differences among the heatmaps we generated for each cell type,” said Jonathan Beagan, a graduate student in Phillips-Cremin’s laboratory at the University of Pennsylvania. “Our observations are important because they suggest that, if we can push the 3D genome conformation of cells that we are turning into IPSCs to be closer to that of embryonic stem cells, then we can possibly generate IPSCs that match gold-standard pluripotent stem cells more rapidly and efficiently.”

This paper was published in Cell Stem Cell (2016), 18(5): 611–624. Therefore, the chromatin structure of iPSCs is also important.

Finally, another paper reports some good news for iPSCs. Research from the Wellcome Trust Sanger Institute tracked the genetic mutations acquired by iPSCs when they are made in the laboratory. These cells came from the blood of a 57-year-old male subject.

This research, led by Allan Bradley, showed that mutations arise 10 times less often in iPSCs than they do in cultured laboratory-grown blood cells. Furthermore, non of the iPSC-acquired mutations were in genes known to cause cancer.

Bradley and his colleagues were able to trace the history of every mutation that each cell acquired from its extraction from the body to its reprogramming in the laboratory and propagation in culture.

The techniques utilized in the Bradley laboratory can surely help scientists evaluate the genetic integrity of laboratory-derived iPSCs.

This work was published in PLOS Genetics, 2016; 12(4): e1005932 DOI: 10.1371/journal.pgen.1005932.

All in all, it seems that it is possible to make sound iPSC lines, but those lines must be properly screened before they can be used in a clinical setting to treat live patients. These three papers provide new ways to screen iPSC lines for ensure high levels of safety and efficacy.

Pluripotent Stem Cells Actively Regulate The Openness of their Heterochromatin


Packaging DNA into a small area like the nucleus of the cell does not occur unless that DNA is tightly wound into compact structures collectively known as chromatin. However, not all regions of the genome show the same degree of compaction. Highly-expressed regions of the genome tend to be less highly compacted and regions of the genes that are not expressed to any degree tend to be squirreled away into tight chromatin.

Pluripotent stem cells tend to have an open and decondensed chromatin organization. In fact, this open and decondensed chromatin configuration is a defining property of pluripotent cells in general. The connection between pluripotency and the is open chromatin organization and the mediators of this chromatin configuration remain shrouded in uncertainty.

A new study from the laboratory of Peter J Rugg-Gunn at the Babraham Institute, in collaboration with scientists from Canada, the United Kingdom, and Japan, has identified two proteins, Nanog and Sall1 that participate in the chromatin structure of pluripotent stem cells. Such an understanding can contribute to making better pluripotent stem cells.

Cells tend to possess regions of the genome that are tightly wrapped into tight heterochomatin. These genomic regions are usually structural in nature and are, typically, not expressed. These include centromeric DNA and pericentromeric DNA, which plays a role in spindle attachment during cell division. These regions are collectively known as “constitutive heterochromatin.” However, previous research has demonstrated that this constitutive heterchromatin is maintained in an open and uncompacted conformation.

Clara Lopes Novo, in Rugg-Gunn’s laboratory and her colleagues discovered that transcription factor NANOG acts as an integral regulator of the conformation of constitutive heterochromatin in mouse embryonic stem cells. When Lopes Novo and others deleted the Nanog genes in mouse embryonic stem cells, the constitutive heterochromatin was remodeled in a manner that led to more intensive chromatin compaction. However, when Lopes Novo and her coworkers forced the expression of the Nanog gene in mouse embryonic stem cells, leading to spikes in the levels of NANOG proteim, the heterochromatin domains showed distinct decompaction.

When Lopes Novo and others determined where NANOG spent its time, they discovered that it was bound to heterochromatin. In particular, NANOG associated with satellite repeats within heterochromatin domains. Heterochromatin that was associated with NANOG had highly dispersed chromatin fibers, low levels of modified histone proteins that are usually associated with chromatin compaction (i.e. H3K9me3), and high levels of transcription.

The second heterochromatin-associated protein, SALL1, seems to work in cahoots with NANOG. In fact, when Lopes Novo and others deleted the Sall1 gene from mouse embryonic stem cells, the Sall1-/- cells recapitulate the Nanog -/- phenotype. However, further work showed that the loss of Sall1 can be rescued by forcing the recruitment of the NANOG to major portions of the heterochromatin (by over-expressing the NANOG protein).

These results demonstrate the connection between pluripotency and chromatin organization. This work seems to say, “embryonic stem cells actively maintain an open heterochromatin architecture.” They do this to stabilize their pluritotency.

Loss of heterochromatin regulation has potential consequences for the long-term genetic stability of stem cells, and the ability of stem cells, and the ability of stem cells to differentiate and mature into specialized cell types.

This work was published in the journal Genes and Development (http://www.genesdev.org/cgi/doi/10.1101/gad.275685.115)

Histones Might Hold the Key to the Generation of Totipotent Stem Cells


Reprogramming adult cells into pluripotent stem cells remains a major challenge to stem cell research. The process remains relatively inefficient and slow and a great deal of effort has been expended to improve the speed, efficiency and safety of the reprogramming procedure.

Researchers from RIKEN in Japan have reported one piece of the reprogramming puzzle that can increase the efficiency of reprogramming. Shunsuke Ishii and his colleagues from RIKEN Tsukuba Institute in Ibaraki, Japan have identified two variant histone proteins that dramatically enhance the efficiency of induced pluripotent stem cell (iPS cell) derivation. These proteins might be the key to generating iPS cells.

Terminally-differentiated adult cells can be reprogrammed into a stem-like pluripotent state either by artificially inducing the expression of four factors called the Yamanaka factors, or as recently shown by shocking them with sublethal stress, such as low pH or pressure. However, attempts to create totipotent stem cells capable of giving rise to a fully formed organism, from differentiated cells, have failed.  However, a paper recently published in the journal Nature has shown that STAP or stimulus-triggered acquisition of pluripotency cells from mouse cells have the capacity to form placenta in culture and therefore, are totipotent.

The study by Shunsuke Ishii and his RIKEN colleagues, which was published in the journal Cell Stem Cell, attempted to identify molecules in mammalian oocytes (eggs) that induce the complete reprograming of the genome and lead to the generation of totipotent embryonic stem cells. This is exactly what happens during normal fertilization, and during cloning by means of the technique known as Somatic-Cell Nuclear Transfer (SCNT). SCNT has been used successfully to clone various species of mammals, but the technique has serious limitations and its use on human cells has been controversial for ethical reasons.

Ishii’s research group focused on two histone variants named TH2A and TH2B, which are known to be specific to the testes where they bind tightly to DNA and influence gene expression.

Histones are proteins that bind to DNA non-specifically and act as little spool around which the DNA winds.  These little wound spools of DNA then assemble into spirals that form thread-like structures.  These threads are then looped around a protein scaffold to form the basic structure of a chromosome.  This compacted form of DNA is called “chromatin,” and the DNA is compacted some 10,000 to 100,000 times.  Histones are the main arbiters of chromatin formation.  In the figure below, you can see that the “beads on a string” consist of histones with DNA wrapped around them.

DNA_to_Chromatin_Formation

There are five “standard” histone proteins: H1, H2A, H2B, H3, and H4.  H2A, H2B, H3 and H4 form the beads and the H1 histone brings the beads together to for the 30nm solenoid.  Variant histones are different histones that assemble into beads that do not wrap the DNA quite as tightly or wrap it differently than the standard histones.  Two variant histones in particular, TH2A and TH2B, tend to allow DNA wrapped into chromatin to form and more loosely packed structure that allows the expression of particular genes.

When members of Ishii’s laboratory added these two variant histone proteins, TH2A/TH2B, to the Yamanaka cocktail (Oct4, c-Myc, Sox2, and Klf4) to reprogram mouse fibroblasts, they increased the efficiency of iPSC cell generation about twenty-fold and the speed of the process two- to threefold. In fact, TH2A and TH2B function as substitutes for two of the Yamanaka factors (Sox2 and c-Myc).

Ishii and other made knockout mice that lacked the genes that encoded TH2A and TH2B. This work demonstrated that TH2A and TH2B function as a pair, and are highly expressed in oocytes and fertilized eggs. Furthermore, these two proteins are needed for the development of the embryo after fertilization, although their levels decrease as the embryo grows.

Graphical Abstract1 [更新済み]

In early embryos, TH2A and TH2B bind to DNA and induce an open chromatin structure in the paternal genome (the genome of sperm cells), which contributes to its activation after fertilization.

These results indicate that TH2A/TH2B might induce reprogramming by regulating a different set of genes than the Yamanaka factors, and that these genes are involved in the generation of totipotent cells in oocyte-based reprogramming as seen in SCNT.

“We believe that TH2A and TH2B in combination enhance reprogramming because they introduce a process that normally operates in the zygote during fertilization and SCNT, and lead to a form of reprogramming that bears more similarity to oocyte-based reprogramming and SCNT” explains Dr. Ishii.

Tumor Suppressor Gene is Required For Neural Stem Cells to Differentiate into Mature Neurons


Cancer cells form when healthy cells accumulate mutations that either inactivate tumor suppressor genes or activate proto-oncogenes. Tumor suppressor genes work inside cells to put the brakes on cell proliferation. Proto-oncogenes work to drive cell proliferation. Loss-of-function mutations in tumor suppressor genes remove controls on cell proliferation, which causes cells to divide uncontrollably. Conversely activating mutations in proto-oncogenes removes the controls on the activity of proto-oncogenes, converting them into oncogenes and driving the cell to divide uncontrollably. If a cell accumulates enough of these mutations, they can grow in such an uncontrollable fashion that they start to gain extra chromosomes or pieces of chromosomes, which contributes to the genetic abnormality of the cell. Accumulation of more mutations allows the cell to break free from the original tumorous mass and spread to other tissues.

There are over 35 identified tumor suppressor genes and one of these, CHD5, has another role besides controlling cell proliferation. Researchers at Karolinska Institutet in Stockholm, Swede, in collaboration with other laboratories at Trinity College in Dublin and BRIC in Copenhagen has established a vital role for CHD5 in normal nervous development.

Once stem cells approach the final phase of differentiation into neurons, the CHD5 protein is made at high levels. CHD5 reshapes the chromatin structure into which DNA is packaged in cells, and in doing so, it facilitates or obstructs the expression of other genes.

Ulrika Nyman, postdoc researcher in Johan Holmberg’s laboratory, said that when they switched of CHD5 expression in stem cells from mouse embryos at the time when the brain develops, the CHD5-less stem cells were unable to turn off those genes that are usually expressed in other tissues, and equally unable to turn on those genes necessary for making mature neurons. Thus these CHD5-less stem cells were trapped in a nether-state between stem cells and neurons.

CHD5 function in stem cell differentiationretinoic

The gene that encodes the CHD5 protein is found on chromosome 1 (1p36) and it is lost in several different cancers, in particular neuroblastomas, a disease found mainly in children and is thought to arise during the development of the peripheral nervous system.

Neuroblastomas that lack this part of chromosome 1 that contains the CHD5 gene are usually more aggressive and more rapidly fatal.

Treatment with retinoic acid forces immature nerve cells and some neuroblastomas to mature into specialized nerve cells. However, when workers from Holmberg’s laboratory prevented neuroblastomas from turning up their expression of CHD5, they no longer responded to retinoic acid treatment.

Holmberg explained, “In the absence of CHD5, neural tumor cells cannot mature into harmless neurons, but continue to divide, making the tumor more malignant and much harder to treat. We now hope to be able to restore the ability to upregulate CHD5 in aggressive tumor cells and make them mature into harmless nerve cells.”

Polycomb Proteins Pave the Way for Proper Stem Cell Differentiation


Embryonic stem cells have the ability to differentiate into one of the more than 200 cell types. Differentiation requires a strictly regulated program of gene expression that turns certain genes on at specific times and shuts other genes off. Loss of this regulatory circuit prevents stem cells from properly differentiating into adult cell types, and an inability to differentiate has also been linked to the onset of cancer.

Researchers at the BRIC, University of Copenhagen have identified a crucial role of the molecule Fbx110 in embryonic stem cell differentiation. Kristian Helin from the BRIC said, “Our new results show that this molecule is required for he function of one of the most important molecular switches that constantly regulated the activity of our genes. If Fbx110 is not present in embryonic stem cells, the cells cannot differentiate properly and this can lead to developmental defects.”

What is the function of Fbx110? Fbx110 recruits members of the “Polycomb” gene family to DNA. Polycomb proteins, in particular PRC1 & 2, are known to modulate the structure of chromatin, even though they do not bind DNA. Fbx110,, however binds DNA, but it also binds PRC1 . Therefore, Fbx110 seems to serve as an adapter that recruits Polycomb proteins to DNA.

Polycomb proteins bound to nucleosomes
Polycomb proteins bound to nucleosomes

Postdoctoral fellow Xudong Wu, who led the experimental part of this investigation, said, “Our results show that Fbx110 is essential for recruiting PRC1 to genes that are to be silenced in embryonic stem cells. Fbx110 binds directly to DNA and to PRC1, and this way it serves to bring PRC1 to specific genes. When PRC1 is bound to DNA it can modify the DNA associated proteins, which lead to silencing of the gene to which it binds.”

Timing of gene activity is crucial during development and must be maintained throughout the lifespan of any cell. Particular genes are active at a certain times and inactive at other times, and PRC1 seems to be part of the reason for this coordination of gene activity. PRC1 is dynamically recruited to and dissociates from genes according to the needs of the organism.

When cancer arises, this tight regulation of gene activity is often lost and the cells are locked in an inchoate state. This loss of terminal differentiation causes increases cell proliferation and the accumulation of other mutations that allow the cancer cells to undergo continuous self-renewal through endless cell divisions. Such an ability is denied to mature cells because of their tightly controlled programs of gene expression.

Wu added, “Given the emerging relationship between cancer and stem cells, our findings may implicate that an aberrant activity of Fbx110 can disturb PRC function and promote a lack of differentiation in our cells. This makes it worth studying whether blocking the function of Fbx110 could be a strategy for tumor therapy.”

In collaboration with a biotech company called EpiTherapeutics, the BRIC researchers want to develop Fbx110 inhibitors as potential novel therapies for cancer.

How Pluripotent Stem Cells Stay Themselves


Embryonic stem cells (ESCs) have an uncanny ability to perpetually divide in culture and differentiate into any cell type found in the adult body. The internal switches inside ESCs that keep them pluripotent or drive them to differentiate are incompletely understood at this. However new work from the Carnegie Institution for Science has opened a new doorway into this event.

Yixian Zheng and his research team has focused on the process by which ESCs stay in their pluripotent state. There are three protein networks within the cell that direct the self-renewal and differentiation aspects of cell behavior. These networks consist of 1) the pluripotent core, which includes the protein called Oct4 and its many co-workers; 2) the Myc-Arf network, which directs cell proliferation, and 3) the PRC2 or polycomb proteins, which repress genes necessary for differentiation. How these networks are integrated remains quite unclear. Zhen and his group have found a protein that seems to link all three of these networks together.

A protein called Utf1 seems to act as the cord that ties all three of these networks together. First, Utf1 limits the loading of PRC2 on the DNA and it also prevents PRC2 from modifying chromatin so that the DNA assumes a very tight, compact structure that prevents gene expression. Thus, Utf1 keeps the DNA somewhat poised and ready for gene expression, should the proper conditions come about that favor differentiation. Secondly,. for those genes that are not completely shut off by PRC2, Utf1 works through a protein complex called the DCP1a complex to degrade these mRNAs made these incompletely repressed genes. Finally, Utf1 downregulates the My-Afr feed pathway. The Myc and Arf work together to curtail cell proliferation, but the inhibition of this pathway ensures that the cell continues to divide properly.

According to Zheng, “We are slowly but surely growing to understand the physiology of embryonic stem cells. It is crucial that we continue to carrying out [sic] basic research on how these cells function.”

Zheng is a Howard Hughes Medical Institute Researcher at the National Institutes of Health and in the Department of Embryology at the Carnegie Institute for Science in Baltimore, Maryland.

This work was published in the journal Cell under the title, “Regulation of pluripotency and self-renewal of ESCs through epigenetic-threshold modulation and mRNA pruning.” Cell 2012 3:576.