Dying Muscles Leave “Ghost Fibers” that Direct Muscle Regeneration


When muscles are injured, they die off in order to make room for the growth of replacement muscles. However, it turns out that these moribund muscle leave behind small evanescent fibers that have been called “ghost fibers.” Ghost fibers seem to be remnants of the gooey stuff that provides the substratum upon which muscle cells sit. This gooey foundation is called “extracellular matrix” or ECM. The ECM consists of acid sugars called “glycosaminoglycans,” which are given the unfortunate abbreviation of GAGs, proteins to which GAGs are attached called “proteoglycans,” and proteins that glue cells to the ECM, such as fibronectin, laminin, and collagen IV. Cells adhere to the ECM by means of receptors embedded in their cell membranes called integrins.

Extracellular matrix

Dying muscle cells leave collagen fibers in their wake and these collagen fibers constitute these so-called ghost fibers. However, these ghost fibers provide the structure into which new muscle cells are inserted. A new study by research teams at the Carnegie Institution for Science and the National Institute of Child Health and Human Development that was published in the journal Cell Stem Cell has established that ghost fibers guide new muscle cells to grow in place and ultimately heal muscle injury in laboratory mice.

Ghost Fibers
Ghost Fibers

Chen-Ming Fan at the Carnegie Institute of Washington in Baltimore, Maryland and his colleagues, in collaboration with and Jennifer Lippincott-Schwartz and her colleagues from the NIH disabled the hind limb muscles of laboratory mice by means of physical injury (laceration), or the administration of toxins. These insults to the skeletal muscles caused the injured muscle fibers to die and disintegrate. They also confirmed that as the skeletal muscle disappeared, they left networks of collagen ghost fibers in their wake.

Then, this team utilized three-dimensional, time-lapse intravital imaging to directly visualize the process of muscle regeneration in live mice. What they saw was stunning. The extracellular matrix remnants or ghost fibers left by the injured skeletal directed muscle stem/progenitor cell behavior during muscle regeneration. The two-photon imaging and second-harmonic generation microscopy employed by this team enabled them to precisely observe the muscle stem and precursor cells in individual mice orient themselves along the ghost fibers and grow new muscle tissue.

The muscle stem cells were quiescent and did not move in uninjured muscle tissue. Only when muscle cells were injured did the muscle stem cells come to life, move to the site of injury and begin the healing process. Both the cell division of these muscle stem cells and their migration were oriented along the longitudinal axes of the ghost fibers.

ImageJ=1.49m unit=inch
ImageJ=1.49m
unit=inch

If the ghost fibers were artificially reoriented, then the muscle progenitors migrated and divided in different planes and gave rise to disorganized regenerated muscle fibers.

From these results, Fan and his team concluded that “the ghost fiber (1) is a key determinant for patterning muscle stem cell behavior and (2) provides the foundation for proportional regeneration. They concluded that “ghost fibers are autonomous, architectural units necessary for proportional regeneration after tissue injury.” They continued, “This finding reinforces the need to fabricate bioengineered matrices that mimic living tissue matrices for tissue regeneration therapy.”

How Cardiospheres Heal the Heart


In 2007, Eduardo Marbán and his colleagues have discovered a stem cell population from the hearts of mice and humans that grow as small balls of cells in culture (see RR Smith, et al., Circulation. 2007 Feb 20;115(7):896-908). He called these cells “cardiospheres” and in a follow-up study showed that these cells have the ability to differentiate into heart muscle cells, blood vessel cells, or other types of heart-specific cells (PV Johnson, et al., Circulation. 2009 Sep 22;120(12):1075-83). Other animal experiments by Marban’s group showed that not only were cardiospheres easily obtained by means of heart biopsies, but injection of these cells directly into the heart after a heart attack augmented healing of the heart and accelerated the recovery of heart function and while preserving heart structure (ST Lee, et al., J Am Coll Cardiol. 2011 Jan 25;57(4):455-65; CA Carr, et al., PLoS One. 2011;6(10):e25669; Shen D, Cheng K, Marbán E. J Cell Mol Med. 2012 Sep;16(9):2112-6).

All of these very hopeful results in culture and in animal studies eventually gave way to a small human clinical trial in which a heart patient’s own cardiospheres were transplanted into their own hearts.  This clinical trial, the CADUCEUS trial (which stands for cardiosphere-derived autologous stem cells to reverse ventricular dysfunction), prevent patient’s hearts from worsening, but more remarkably, the heart scars of these patients were partially erased 6 months after treatment.  A one-year follow-up showed that patients had improved global heart function that directly correlated to the shrinkage of their heart scars.

These results are very encouraging and Marbán made it clear that he wants to conduct larger clinical trials.  However, he still had a gaggle of unanswered questions about his cardiospheres.  Do these cells affect blood vessel formation?  Can they prevent the enlargement of the heart that occurs after a heart attack (known as cardiac remodeling)?  Can the benefits of these cells be solely linked to their effects on the heart scar?  Do cardiospheres prevent the formation of the heart scar?  Do they only help heal the area of the heart where they are administered or do they also help more far-flung regions of the heart?  These are all good questions, and answers to them are necessary if Marbán and his group is to conduct larger and more intense clinical trials with human heart patients.  Therefore, he turned to an animal model system to address these questions in detail.  In particular, he chose Wistar Kyoto rats.

Readers of this blog will recognize the experimental strategy; break the rats into three groups, induce experimental heart attacks in two groups, give one group cultured cardiospheres and leave the other one alone.  Thus you have a sham group that underwent surgery but was not given a heart attack, a heart attack group that did not receive cardiospheres, and a heart attack group into which 2 million rat cardiospheres were injected at four different sites near the site of the infarct.

This experiment, did far more than simply monitor the heart function of the animals for several weeks.  Instead, some of these animals were sacrificed and their hearts were subjected to extensive biochemical and molecular biological tests.   The goal of these experiments was to determine not just if the cardiospheres helped heal the heart.  Marbán and his group already knew that they do.  They wanted to know how they heal the heart.

The cardiosphere-treated animals showed substantial improvements in their heart function as opposed to their non-treated counterparts.  The treated animals had heart that did not undergo remodeling and also pumped better.  Hearts from the cardiosphere-treated animals had less dead heart tissue and more live tissue.  They had smaller heart scars, and better preservation of cellular structure in the heart.  When biochemical markers of proliferating cells were measured in these hearts, the cardiosphere-treated hearts showed robust increases in cell proliferation far above those hearts that were not treated with cardiospheres.  Thus cardiospheres seem to induce resident heart cells to divide and replace dead and dying heart cells.

A common response to a heart attack is that the surviving heart cells enlarge (hypertrophy).  The cardiosphere-treated hearts showed no such response.  Also, when the blood vessel density of the heart tissue was determined, the cardiosphere-treated hearts had close the twice the vessel density of the non-treated hearts.  This was the case near the site of cardiosphere injection, but it also held, albeit not as robustly, in areas far from the site of cardiosphere injection.  This suggests that blood vessel formation is due to secreted molecules.

To test this possibility, Marbán and his crew rigged a culture assay in which rings of tissue from the aorta (the largest blood vessel in the body), were embedded in collagen and treated with culture media from cardiospheres, standard culture cell culture media, or cell culture medium from endothelial cells.  The cardiosphere culture medium, which contains a cocktail of molecules secreted by growing cardiospheres as they have grown in culture, induced far more blood vessels in this system than the other two.  This confirms the notion that cardiospheres secrete blood vessels-inducing molecules that this increases the vascularization of the heart muscle, this aiding its survival.

Marbán and his team also examined the molecule that forms the heart scar; collagen and how cardiospheres affect the synthesis and deposition of collagen.  They discovered that cardiospheres actually degrade the collagen at the heart scar.  They showed that cardiosphere secrete enzymes that have been documented to degrade collagen (Matrix Metalloproteases 2 and 13 for those who are interested).  Marbán and others also discovered that cardiospheres put the kibosh on collagen synthesis.  When they measured biochemical markers of collagen synthesis (hydroxyproline), they were present at rather low levels.  Thus cardiospheres prevent the deposition of the heart scar and also actively degrade it.

Thus, Marbán and his colleagues showed that cardiospheres: 1) prevent the tissue-level changes associated with cardiac remodeling; 2) preserve heart function locally and globally; 3) increase the proliferation of heart muscle cells at the site of the infarct, and to a lesser effect, throughout the heart; 4) induce the formation of new blood vessels at the site of injection, and, to a lesser extend, further from the site of cardiosphere injection; and 5) actively prevent the formation of the heart scar by inhibiting its formation and degrading whatever collagen has been deposited.

Thus cardiospheres decrease the formation of collagen and therefore, decrease the stiffness of the wall of the heart.  They also product new blood vessels and provide a supportive environment for the formation of new heart muscle cells.

This paper was published in PLoS One (2014) 9(2):e88590.

May Marbán’s clinical trials increase!!

Treating A Genetic Skin Disorder with Induced Pluripotent Stem Cells


Dystrophic epidermolysis bullosa (RDEB) is an inherited skin disease that causes fragile skin. RDEB is caused by mutations in the gene that encoded a protein called type VII collagen. Because collagen is a major structural component of skin, collagen mutations result in fragile skin and mucous membranes that blister easily if they are subjected to even slight mechanical stresses. There are no cures for such diseases, but skin creams and palliative care can decrease the severity of the symptoms.

Induced pluripotent stem cells (iPSCs) have the ability to treat such genetic diseases. In order to provide proof of principle of the applicability of iPSCs for the treatment of RDEB, Daniel Wenzel and his colleagues in the laboratory of Arabella Meixner from the Institute of Molecular Biotechnology of the Austrian Academy of Sciences in Vienna, Austria made iPSCs from mice that harbored mutations in the gene that encodes type VII collagen (Col7a1) and exhibited skin fragility and blistering. The symptoms displayed by these Col7a1-mutant mice resembled human RDEB.

Wenzel and his coworkers then genetically repaired the Col7a1 mutations in these iPSCs, and then differentiated these cells into functional fibroblasts that expressed and secreted normal type VII collagen. When implanted, the genetically-repaired iPSC–derived fibroblasts did not form tumors, and could be successfully traced up to 16 weeks after intradermal injection. Therapy with iPSC-derived fibroblasts also resulted in faithful and long-term restoration of type VII collagen deposition at the epidermal-dermal junction of Col7a1 mutant mice, and restored the resistance of the skin to mechanical stresses.

Thus, intradermal injection of genetically repaired iPSC-derived fibroblasts restored the mechanical resistance of the skin to blistering in RDEB mice. These data demonstrate that, at least in principle, RDEB skin can be effectively and safely repaired using a combination of gene therapy and iPSC-based cell therapy.

A similar study examined another type of epidermolysis bullosa.  Noriko Umegaki-Arao and her colleagues in the laboratory of Angela Christiano from Columbia University used iPSCs to treat mice with a distinct type of epidermolysis bullosa that resulted from mutations in COL17A1 gene, which encodes type XVII collagen (Col17).  In this case, however, the mutation has been observed to revert or fix itself in patients.  Patients tend to have patches of skin that are normal in a sea of abnormal skin.

Therefore, Umegaki-Arao and her coworkers derived iPSCs from Col17-mutant mice, differentiated them into skin cells (keratinocytes) and then cultured them, examining individual clones for reversion to normal Col17, which was fairly easy to do as it turns out.  Once revertant-iPSC keratinocytes were properly secured, and then used them to reconstitute human skin in mutant mice.  Thus, revertant keratinocytes can be a viable source of spontaneously gene-corrected cells for developing iPSC-based therapeutic approaches in the treatment of epidermolysis bullosa.

Mesenchymal Stem Cells Reduce Scarring of Intervertebral Discs and Facilitate Healing


Intervertebral disc degeneration causes substantial back pain and associated pain that shoots down the legs (radiculopathy). Back issues associated with bad intervertebral discs are a leading cause of disability. Such disability costs employers millions of dollars of lost man and woman power and employees extensive loss of wages. Chronic back pain can also seriously compromise the quality of life and presents a large societal burden.

To date, surgery is the only effective treatment option, but surgical interventions sometimes leave patients worse off than before. Thus there is presently no effective intervention for this disease.

However, in a recent paper, Victor Y.L. Leung and his colleagues from the University of Hong Kong and several other institutions as well have used human mesenchymal stem cells from bone marrow to treat damaged intervertebral discs in rabbits. The results, published in the journal Stem Cells, are quite hopeful

Leung and others discovered that by puncturing the intervertebral discs of rabbits with a syringe needle, they could induce damage to the disc that mimics disc degeneration in humans.

Next, they implanted human bone marrow-derived mesenchymal stem cells (MSCs) into the damaged discs. Such implantations prevented scarring of the disc in the center of the disc. The center of the disc, the nucleus pulposus, is more gel-like than the surrounding annulus fibrosus. Scarring of the nucleus pulposus stiffens it and prevents it from moving with stress. An inability to bend with stress causes the disc to become brittle with time and herniate. However, implantation of mesenchymal stem cells preserved the mechanical properties of the disc and benefitted overall spinal function.

By looking more deeply at the mechanism by which mesenchymal stem cells preserve disc function, Leung and others showed that MSCs suppress abnormal deposition of collagen I in the nucleus pulposus. Since collagen is made during scarring, suppression of collagen I synthesis suppressed scarring. Secondly, implanted MSCs decreased the expression of two molecules that promote the synthesis of collagen I. By suppressing the expression of MMP12 and HSP47, the implanted MSCs also reduced collagen aggregation and maintained the microarchitecture of the disc and its mechanical properties.

This  study supports the ability of MSCs to stimulate resident stem cell activities and disc healing. The implanted MSCs seem to do so by means of down-regulating collagen  fibril formation. This provides the basis for the MSC‐based disc therapies.

Stem Cell Treatment for Degenerative Disc Disease


A new analysis of stem cell trials that targeted degenerative disc disease of the spine in animals has shown that these treatments are effective in halting or even reversing this disease. Such results should facilitate the implementation of human clinical trials.

Our spinal cords are encased in a protective body of bone known as the vertebral column. The vertebral column consists of a stack of vertebral bodies that are positioned with one vertebra one on top of the other. Between each pair of vertebral bodies is a cushion-like structure known as the intervertebral disc. The intervertebral disc absorbs the stress and shock placed on the vertebral column when someone walks, runs, moves, bends, or twists. The discs prevent the vertebral bodies from grinding against each other.

Vertebral column

Structurally, the intervertebral discs are unique. They have no blood supply of their own, and are, as a matter of fact, the largest structures in the body without their own blood vessel system. Instead they absorb the nutrients they need from circulating blood by means of osmosis.

Each intervertebral disc is composed of two parts: an outer annulus fibrosus (fibrous ring) and the nucleus pulposus (pulpy interior). The annulus fibrosus is a ring-like structure that completely encases the nucleus pulposus. It is composed of water and strong elastic collagen fibers bound together by glue-like material called proteoglycan. The arrangement of these collagen fibers at varying angles relative to each other makes the annulus fibrosus a rather strong structure. The annulus fibrous stabilizes the intervertebral disc and helps the spine can rotate properly and resist compression or other stresses placed on the spine.

The center portion of the intervertebral disc that is protected by the annulus fibrosus is a gel-like elastic substance called nucleus pulposus. The nucleus pulposus transmits and transfers stress and weight placed on vertebrae during movement and activity. The nucleus pulposus is made of the same basic materials as the nucleus fibrosus: water, collagen, and proteoglycans. The main difference between the ring-like annulus fibrosus and the gel-like nucleus pulposus is the relative amounts of these substances. The nucleus pulposus contains more water than the annulus fibrosus.

Intervertebral disc structure

Recent developments in stem cell research have made it possible to measure the effects of stem cells treatments on intervertebral disc height. Researchers at the Mayo Clinic in Rochester, Minnesota have pioneered such techniques.

In preclinical animal studies, stem cell treatments have been used to treat animals with degenerative disc disease. Because degenerative disc disease can great affect someone’s quality of life and productivity, such a treatment has been highly sought after.

Wenchun Qu, MD, PhD, of the Mayo Clinic in Rochester, Minn said that stem cell injections into degenerating intervertebral discs not only increased disc height, but also increased disc water content and improved the expressed of particular genes. “These exciting developments place us in a position to prepare for translation of stem cell therapy for degenerative disc disease into clinical trials,” said Qu.

Animals that had received stem cell injections into their intervertebral discs had a disc structure that was large restored. The nucleus pulposus showed an increased water content and improved abilities to transfer shear forces.

In their analysis, Qu and his colleagues examined six preclinical trials and only examined those studies that were randomized and properly controlled. Because of various methodological differences between these studies, Qu and his gang used a random-effects model to analyze the data. Random-effects models, put simply, put all the animals in a group of studies together and assumes that they can be placed in a hierarchy of those who are the sickest to those who are the least sick. By placing the individuals in a hierarchy like this they can be classified accordingly and the effects of their treatments assessed fairly.

When properly and rigorously analyzed, the intervertebral disc height increases were significant in all six studies.  What they found was an over 23.6% increase in the disc height index in the transplant group compared with the placebo group (95% confidence interval [CI], 19.7-23.5; p < 0.001). None of the 6 studies showed a decrease of the disc height index in the transplant group. Increases in the disc height index were statistically significant in all individual studies.

On the strength of these preclinical studies, Qu and his colleagues think that it is time to determine the safety, feasibility, and efficacy of stem cell transplants for degenerative disc disease in human patients.

Because intervertebral discs show such poor regenerative capabilities, degenerative disc disease is an excellent candidate for stem cell treatments. Also, present treatments tend to be very invasive and often make the disc worse.

Reducing the Heart Scar After a Heart Attack


After a heart attack, inflammation in the heart kills off heart muscle cells and fibroblasts in the heart make a protein called collagen, which forms a heart scar. The heart scar does not contract and does not conduct electrochemical signals. The scar will contract over time, but its presence can lead to abnormal heart rhythms, also known as arrhythmias. Arrythmias can be fatal, since they can cause a heart attack. To prevent a heart attack, physicians will treat heart attack patients with a group of drugs called beta-blockers that slow down the heart rate and protect the heart from the deleterious effects of norepinephrine (secreted by the sympathetic nerve inputs to the heart). An alternative treatment is digoxin or digitalis, which is a chemical found in foxglove. Digitalis inhibits ion pumps in heart muscle cells and slows the heart and the force of its contractions. Digitalis, however, interacts with a whole shoe box fill of drugs, has a very long half-life, and is hard to dose. Therefore it is not the first choice.

Given all this, helping the heart to make a smaller heart scar is a better strategy for treating a heart after a heart attack. To accomplish this, you need to inhibit the heart fibroblasts that make the heart scar in the first place. Secondly, you must move something into the place of the dead cells. Otherwise, the heart could burst or scar tissue will move into the area anyway.

To that end, Yigang Wang and his colleagues at the University of Cincinnati Medical Center in Ohio have published an ingenious paper in which they tried two different strategies to reduce the size of the heart scar, which concomitantly increased the colonization of the heart by induced pluripotent stem cells engineered to express a sodium-calcium exchange pump.

Previously, Wang and his colleagues used a patch to heal the heart after a heart attack. The patch consisted of endothelial cells, which make blood vessels, induced pluripotent stem cells engineered to make a sodium-calcium exchange pump called NCX1, and embryonic fibroblasts. This so-called tri-cell patch makes new blood vessels, establishes new heart muscle, and the foundational matrix molecules to form a platform for beating heart muscle.

In order to get these cells to spread throughout the injured heart, Wang and others used a reagent that specifically inhibits heart fibroblasts. They used a small non-coding RNA molecule. A group of microRNAs called miR-29 family are downregulated after a heart attack. As it turns out, these microRNAs inhibit a group of genes that involved in collagen deposition. Therefore, by overexpressing miR-29 microRNAs, they could prevent collagen deposition and reduce scar formation.

The experimental design in this paper is rather complex. Therefore, I will go through it slowly. First, they tried to overexpress miR-29 microRNAs in cultured heart fibroblasts and sure enough, they inhibited collagen synthesis. Cells overexpressing miR-29 made less than a third of the collagen of their normal counterparts. When they placed these fibroblasts into the heart and induced heart attacks, again, they made significantly less collagen when they were expressing miR-29.

Then they used their miR-29 RNAs by injecting them directly into the heart before inducing a heart attack, and then after the heart attack, they applied the tri-patch. Their results were significant. The scar size was smaller (almost one-third the size of the controls), and the density of blood vessels was much higher in the tri-patched hearts treated with miR-29. The induced pluripotent stem cells differentiated into heart muscle cells and spread throughout the heart. Heart function measures also consistently went up too.  The echiocardiograph before more normal, the ejection fraction went up, the % shortening of the heart muscle fibers was increased, and the relaxation phase of the heart (diastole) also was not so puffy (see graphs and figures below).

(A): M-mode echocardiograph data in three groups. (B): Quantification analysis for heart function. Quantitative data for LVDd (B-1), LVDs (B-2), EF (B-3), and FS (B-4) 4 weeks after Tri-P implantation. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. Anti-29b+MI+Tri-P group. LVDd, left ventricular enddiastolic diameters; LVDs, left ventricular end-systolic diameters; EF, ejection fraction index; FS, fractional shortening. All values expressed as mean 6 SEM. n = 6 for each group. (C): Two-D mode echocardiograph data in three groups, analyzed by long-axis and short-axis views. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. miR-29b+MI+Tri-P group. Ctrl, control mimic pretreatd rat with Tri-cell patch graft; miR-29b, miR- 29b mimic pretreated rat with Tri-cell patch graft; Anti-29b, miR-29b inhibitor pretreated rat with Tri-cell patch graft. White dotted lines indicate endocardium and epicardium.
(A): M-mode echocardiograph data in three groups. (B): Quantification analysis for heart function. Quantitative data for LVDd (B-1), LVDs (B-2), EF (B-3), and FS (B-4) 4 weeks after Tri-P implantation. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. Anti-29b+MI+Tri-P group. LVDd, left ventricular enddiastolic diameters; LVDs, left ventricular end-systolic diameters; EF, ejection fraction index; FS, fractional shortening. All values expressed as mean 6 SEM. n = 6 for each group. (C): Two-D mode echocardiograph data in three groups, analyzed by long-axis and short-axis views. *p,0.05 vs. Ctrl+MI+Tri-P group; {p,0.05 vs. miR-29b+MI+Tri-P group. Ctrl, control mimic pretreatd rat with Tri-cell patch graft; miR-29b, miR-29b mimic pretreated rat with Tri-cell patch graft; Anti-29b, miR-29b inhibitor pretreated rat with Tri-cell patch graft. White dotted lines indicate endocardium and epicardium.

There is a cautionary note to this study. Inhibiting collagen formation after a heart attack could create soft fragile regions of the heart that are subject to rupture should the vascular systolic pressure increase. While that threat was not observed in this study, human hearts, which are much larger, would be much more susceptible to such a mishap. Therefore, while this study is interesting and suggest a strategy in humans, it requires more testing and refinement before anyone can even think about applying it to humans.

Nanometer Scaffolds Regulate Neural Stem Cells


In the laboratory, stem cells can grow in liquid culture quite well in many cases, but this type of culture system, though convenient and rather inexpensive, does not recapitulate the milieu in which stem cells normally grow inside our bodies. Inside our bodies, stem cells stick to all kinds of surfaces and interact with and move over a host of complex molecules. Many of the molecules that stem cells contact have profound influences over their behaviors. Therefore, reconstituting or approximating these environments in the laboratory is important even though it is very difficult.

Fortunately nanotechnology is providing ways to build surfaces that approximate the kinds of surfaces stem cells encounter in our bodies. While this field is still in its infancy, stem cell-based nanotechnology may provide strategies to synthesize biologically relevant surfaces for stem cell growth, differentiation, and culture.

One recent contribution to this approach comes from Jihui Zhou and his team from the Fifth Hospital Affiliated to Qiqihar Medical University. Zhou and his co-workers prepared randomly oriented collagen nanofiber scaffolds by spinning them with an electronic device. Collagen is a long, fibrous protein that is found in tendons, ligaments, skin, basement membranes (the substratum upon which sheets of cells sit), bones, and is also abundant in cornea, blood vessels, cartilage, intervertebral disc, muscles, and the digestive tract. Collagen is extremely abundant in the human body; some 30% of all the proteins in our bodies are collagen. It is the main component in connective tissues.

There are many different types of collagen. Some types of collagen form fibers, while others for sheets. There are twenty-eight different types of collagen. Mutations in the genes that encode collagens cause several well-known genetic diseases. For example, mutations in collagen I cause osteogenesis imperfecta, the disease made famous by the Bruce Willis/Samuel T. Jackson movie, “Unbreakable.” Mutations in Collagen IV cause Alport syndrome, and mutations in either collagen III or V cause Ehlers-Danlos Syndrome.

Wen cells make fibrous collagen, they weave three collagen polypeptides together to form a triple helix protein that is also heavily crosslinked. This gives collagen its tremendous tensile strength.

Collagen fibers
Collagen fibers

In this experiment, electronic spinning technology made the collagen fibers and these fibers had a high swelling ratio when placed in water, high pore size, and very good mechanical properties.

Zhou grew neural stem cells from spinal cord on these nanofiber scaffolds and the proliferation of the neural stem cells was enhanced as was cell survival. Those genes that increase cell proliferation (cyclin D1 and cyclin-dependent kinase 2) were increased, as was those genes that prevent cells from dying (Bcl-2). Likewise, the expression of genes that cause cells to die (caspase-3 and Bax) decreased.

Thus novel nanofiber scaffolds could promote the proliferation of spinal cord-derived neural stem cells and inhibit programmed cell death without inducing differentiation of the stem cells. These scaffolds do this by inducing the expression of proliferation- and survival-promoting genes.