Preventing the Rejection of Embryonic Stem Cell Derivatives – Take Two

Yesterday I blogged about the paper from Yang Xu’s group that used genetically engineered embryonic stem cells to make adult cell types that were not rejected by the immune systems of mice with humanized immune systems. I would like to say a bit more about this paper before I leave it be.

First of all, Xu and his colleagues engineered the cells to express the cell-surface protein PD-L1, which stands for programmed cell death ligand 1 (also known as CD274), and another protein called CTLA4-Ig. The combination of these two proteins tends to make these cells invisible to the immune system for all practical intents and purposes.

PD-L1, however, is used by tumor cells to evade detection by the immune system. For example, increased expression of PD-L1 is highly correlated with the aggressiveness of the cancer. One particular experiment examined 196 tumor specimens that had been extracted from patients with renal cell carcinoma (kidney tumors). In these tumor samples, high expression of PD-L1 was positively associated with increased tumor aggressiveness and a those patients that had higher expression of PD-L1 have a 4.5-fold increased risk of death (see Thompson RH, et al., Proc Natl Acad Sci USA 101 (49): 17174–9). In patients with cancer of the ovaries, those tumors with higher PD-L1 expression had a significantly poorer prognosis than those with lower PD-L1 expression. The more PD-L1 these tumors expressed, the fewer tumor-hunting T cells (CD8+ T cells) were present (see Hamanishi J, and others, Proc Natl Acad Sci USA 104 (9): 3360–5).

So the Xu paper proposes that we introduce genetically engineered cells, which are already at risk for mutations in the first place, into the body, that constitutively express PD-L1, a protein known to be highly expressed in the most aggressive and lethal tumors. Does this sound like a good idea?

With respect to CTLA4-Ig, this is a cell-bound version of a drug that has been approved as an anti-transplantation rejection drug called Belatacept (Nulojix), made by Bristol-Myers-Squibb. Since this is a cell-bound version of this protein, it will almost certainly not have the systemic effects of Belatacept, and if the cells manage to release a certain amount of soluble CTLA4-Ig, it is likely to be very little and have no biological effect.

Therefore, this strategy, while interesting, does come with its own share of risks and caveats.

Preventing Rejection of Embryonic Stem Cell-Based Tissues

Embryonic stem cells (ESCs) are derived from human embryos. Because they are pluripotent, or have the capacity to make any adult cell type, ESCs are thought to hold great promise for cell therapy as a source of differentiated cell types.

One main drawback to the use of ESCs in regenerative medicine is the rejection of ESC-derived cells by the immune system of the patient. Transplantation of ESC-derived tissues would require the patient to take powerful anti-rejection drugs, which tend to have a boatload of severe side effects.

However, a paper reports a strategy to circumvent rejection of ESC-derived cells. If these strategies prove workable, then they might clear the way to the use of ESCs in regenerative medicine.

The first paper comes from the journal Cell Stem Cell, by Zhili Rong, and others (Volume 14, Issue 1, 121-130, 2 January 2014). In this paper, Rong and his colleagues from the laboratory of Yang Xu at UC San Diego and their Chinese collaborators used mice whose immune systems had been reconstituted with a functional human immune system. These humanized mice mount a robust immune response against ESCs and any cells derived from ESCs.

In their next few experiments, Xu and others genetically engineered human ESCs to routinely express two proteins called CTLA4-Ig and PD-L1. Now this gets a little complicated, but stay with me. The protein known as CTLA4-Ig monkeys with particular cells of the immune system called T cells, and prevents those T cells from mounting an immune response against the cells that display this protein on their surfaces. The second protein, PD-L1, also targets T cells and when T cells bind to cells that have this protein on their surfaces, they are completely prevented from acting.

CTLA-4 mechanism

Think of it this way: T cells are the “detectives” of the immune system. When they find something fishy in the body (immunologically speaking), they get on their “cell phones” and call in the cavalry. However, when these detectives come upon these cells, their cell phones are inactivated, and their memories are wiped. The detectives wander away and then do not remember that they ever came across these cells.

Further experiments showed that any derivatives of these engineered ESCs, (teratomas, fibroblasts, and heart muscle cells) were completely tolerated by the immune system of these humanized mice.

This is a remarkable paper. However, I have a few questions. Genetic engineering of these cells might be potentially dangerous, depending upon how it was done, where in the genome the introduced genes insert, and how they are expressed. Secondly, if cells experience any mutations during the expansion of these cells, these mutations might cause the cells to be detected by the immune system. Third, do these types of immune repression last long-term? Clearly more work will need to be done, but these questions are potentially addressable.

My final concern is that if this procedure is used widespread, it might lead to the wholesale destruction of human embryos. Human embryos, however, are the youngest, weakest, and most vulnerable among us. What does that say about us if we do not value the weakest among us and dismember them for their cells? Would we allow this with toddlers?

Thus my interest and admiration for this paper is tempered by my concerns for human embryos.