Americord Registry Funds Research in the Use of Stem Cells for Cancer Patients


Headquartered in New York City, the Americord Registry is one of the leaders in umbilical cord blood, cord tissue and placenta tissue banking. Americord collects, processes, and stores newborn stem cells from umbilical cord blood for future medical or therapeutic use. These uses include the treatment of many blood diseases, including sickle-cell anemia and leukemia.

The Americord Registry has announced that it will fund a research project by the Masonic Cancer Center at the University of Minnesota. This research will examine the potential use of donor stem cells in patients who have been previously treated for three different cancers of the blood or bone marrow; lymphoma, myeloma, or chronic lymphocytic leukemia.

Masonic Cancer Center researchers would like to use donor stem cells to further treat patients who have previously received chemotherapy. Two chemotherapeutic agents, cyclophosphamide and busulfan, for example, arrests the growth of cancer cells, and additionally, prevents the patient’s immune system from rejecting implanted stem cells from a donor. Donated stem cells, for bone marrow or umbilical cord blood, will not share the same array of cell surface proteins as the patient, and might be rejected by the patient’s immune system. However, cancer patients who have been treated with chemotherapeutic agents might be able to tolerate implanted cells, since the anti-cancer drugs might also dull the immune system to the implanted stem cells. These donated stem cells may replace the patient’s immune cells and help destroy any remaining cancer cells.

Americord has a Corporate Giving Program that was established to support research into the therapeutic uses of stem cells from umbilical cord blood, cord tissue, and placenta tissue. The funding for this research comes from Americord’s Corporate Giving Program.

“Americord is committed to supporting the advancement of stem cell treatments and technologies,” said Americord CEO Martin Smithmyer. “We are excited about the research being done at the Masonic Cancer Center and the potential it has for future treatment options.”

The study at the Masonic Cancer Center began in February 2008 and is scheduled to be completed by January 2015. It is registered with ClinicalTrials.gov in accordance with best practices and requirements of the U.S. Food and Drug Administration.

Human Menstrual Blood Stem Cells Treat Premature Ovarian Failure in Mice


Premature ovarian failure (POF) or primary ovarian insufficiency is a condition characterized by loss of normal ovarian function before age 40. POF causes low levels of the hormone estrogen and irregular ovulation (release of eggs). POF causes infertility.

Some medical professional call POF premature menopause, even though these two conditions are not exactly the same. Women with POF may have irregular or occasional menstrual cycles for years and may even become pregnant. However, women with premature menopause cease having periods and can’t become pregnant.

The symptoms of POF are similar to those of menopause: irregular or skipped periods (amenorrhea), which may be present for years or may develop after a pregnancy or after stopping birth control pills; hot flashes, night sweats, vaginal dryness, irritability or difficulty concentrating, and decreased sexual desire.

In women with POF, infertility is very hard to treat, but restoring estrogen levels can avert many of the complications.

There are several causes of POF. Particular chromosomal defects such as Turner’s syndrome, in which a woman has only one X chromosome instead of the usual two, and fragile X syndrome, a major cause of intellectual disability can cause POF. Likewise, exposure to various toxins can also cause POF. Chemotherapy and radiation therapy are probably the most common causes of toxin-induced POF. Other toxins such as cigarette smoke, industrial chemicals, pesticides and viruses may also hasten POF. If the immune system mounts an immune response to ovarian tissue (autoimmune disease), then it might produce antibodies against the woman’s own ovarian tissue. Such antibodies will harm the egg-containing follicles and damage the egg. What triggers the immune response is unclear, but exposure to certain viruses is one possibility. Also various sundry unknown factors may also contribute to it.

There are no treatments for POF that restore the ovaries. For this reason a recent paper in the journal Stem Cells and Development represents a great advance in POF treatment.

Te Liu from the Shanghai Institute of Chinese Medicine and colleagues have used stem cells isolated from human menstrual blood to treat toxin-induced POF in mice.

Human endometrial stem cells exhibit stem cell properties in culture. These human endometrial stem cells are easily isolated from human menstrual blood. Other laboratories have even used them to treat heart conditions in clinical trials.

In this present study, Liu and colleagues treated female mice with the anti-cancer/anti-organ rejection drug cyclophosphamide. This drug pushed the mice into POF. Then one group of mice had human menstrual stem cells injected into their ovaries whereas another group received an injection of phosphate-buffered saline.

After 14 days, ovaries from those mice injected with human menstrual stem cells expressed higher levels of ovarian-specific proteins. Also, the blood levels of estrogen of the stem cell-injected mice were also higher. Postmortem examination also showed that the average ovarian weight of the stem cell-injected mice was much higher, as was the number of normal follicles. Follicles contain eggs surrounded with follicle cells and their absence is indicative of an ovary from a woman who is in menopause. That fact that the stem cell-treated POF mice had normal follicles and more of them suggests that the injected stem cells beefed up the supply of existing eggs and helped them survive and flourish.

These results suggest that these human menstrual stem cells, which are derived from the endometrium, can survive when introduced into a living organism and promote the regeneration of ovaries. There is no evidence that these cells differentiate into eggs, but instead they probably create an environment where the existing moribund eggs are rejuvenated and revitalized. This treatment for POF might be a viable option for human patients; all without destroying human embryos.

Stem Cell Transplants for Non-Hodgkin’s Lymphoma


In patients with aggressive non-Hodgkin’s lymphoma, early stem cell transplants do not improve the overall survival in high-risk patients, but are beneficial in those patients who are at the highest risk.

Lymphomas are cancers of the lymphocytes, which are a specific group of white blood cells. A particular type of lymphoma known as Non-Hodgkin’s lymphoma is more common than the other general type of lymphoma — Hodgkin lymphoma. There are several different subtypes of non-Hodgkin’s lymphoma. The most common non-Hodgkin’s lymphoma subtypes include diffuse large B-cell lymphoma and follicular lymphoma.

The symptoms of non-Hodgkin’s lymphoma include Non-Hodgkin’s lymphoma symptoms may include: swollen lymph nodes in the neck, armpits or groin, swelling of the abdomen and abdominal pain, Chest pain, coughing or trouble breathing, fatigue (tiredness), fever, night sweats, and weight loss.

The usual treatment for aggressive non-Hodgkin’s lymphoma is a combination of four different chemotherapeutic agents designated as “CHOP,” which stands for Cyclophosphamide (alkylating agent that rituximabdamages DNA), Hydroxydaunorubicin (also called doxorubicin or Adriamycin, also a DNA-damaging agent), Oncovin (vincristine, which binds to microtubules and prevents cells from dividing duplicating by binding to the protein tubulin), and Prednisone or prednisolone (corticosteroids). Recently, many oncologists are adding Rituximab to this drug regimen (but only if the lymphoma is of B-cell origin). Rituximab is a monoclonal antibody that binds to the surface of B-lymphocytes (the very cells that have become cancerous) and facilitates their destruction. This new five-drug regimen, R-CHOP, can drive many patients into remission. However, some relapse and go on to receive stem cell transplants.

This present study, which was directed by Patrick Stiff from the Loyola University Medical Center’s Cardinal Bernardin Cancer Center, was designed to determine if an early stem cell transplant before the patient relapsed increase patient survival. This study examined patients from 40 different clinical sites in the United States and Canada.

397 patients who were in defined groups of high risk or intermediate-high risk of relapsing. After initial chemotherapy treatment, those patients who responded to treatment were randomly assigned to receive an autologous stem cell transplant (125 patients) or to a control group (128 patients) who received three additional cycles of the R-CHOP regimen.

After two years, 69 percent of the transplantation patients had no disease progression, compared with 55 percent of the control group. This is a statistically significant difference, but the two-year survival rates in the transplantation group was 74 percent versus 71 percent in the control group, which was not statistically significant. However, patients in the control group who relapsed were later offered stem cell transplants, which is probably why the differences are not statistically significant.

However, mining the data further reveals something even more interesting. While the stem cell transplants did not improve overall survival among the entire group of high-risk and high-intermediate risk patients, the high-risk patients as an isolated subset rather clearly received a remission and survival benefit from the early stem cell transplants. The two-year survival rate was 82 percent in the stem cell transplant group and 64 percent in the control group, which is statistically significant.

Patrick Stiff and his colleagues concluded: “Early transplantation and late transplantation achieve roughly equivalent overall survival in the combined risk groups.” However, “early transplantation appears to be beneficial for the small group of patients presenting with high-risk disease.”

Stiff hopes that this finding will “trigger discussions between such patients and their physicians as to the feasibility of doing early transplants.”

Patients who receives doses of their own stem cells (so-called autologous stem cell transplants), can tolerate very high doses of chemotherapy and/or radiation. This high-dose treatment kills off many cancer cells, but it also destroys the patient’s immune system. Therefore, prior to the treatment, stem cells are removed from the blood or bone marrow of he patient and infused back into the patient. These stem cells then form a new immune set of immune cells that replace the ones destroyed by the chemotherapy.

Previous studies have shown that patients who undergo autologous stem cell transplants have a higher risk of developing secondary cancers that are caused by the chemotherapy or the radiation. However, this new study did not find a statistically significant difference (11 percent in the control group and 12 percent in the stem cell transplant group) in secondary tumor formation between the two groups.

Stiff and his crew are continuing to crunch the numbers and mine the data. “As years go by, there may be additional analysis that may help fine-tune the results so that we will be able to more carefully and concisely define any potential benefit,” said Stiff.

See Patrick J. Stiff, et al, New England Journal of Medicine 2013; 369(18):1681.