Nonhematopoietic Stem Cells from Umbilical Cord Blood Improve Heart Function After a Heart Attack

Xin Yu, who has dual appointments at Case Western Reserve University, in Cleveland, Ohio and the University of Minnesota Medical School in Minneapolis, Minnesota, has published a remarkable paper in the journal Cell Transplantation that describes the use of a stem cell population from umbilical cord blood to treat mice that had suffered heart attacks. The non-invasive way in which these cells were administered and the tremendous healing qualities of these cells makes paper unique.

In 2005, Water Low at the University of Minnesota Medical School described the isolation and characterization of a unique stem cell population from umbilical cord blood that he called nonhematopoietic umbilical cord blood stem cells or nh-UCBSCs. These cells were used to treat animals with strokes and they induced the growth of new brain cells in the brains of treated mice (see J Xiao, Z Nan, Y Motooka, and WC Low, Stem Cells Dev. 2005 Dec;14(6):722-33).

Yu used these cells to treat male Lewis rats that had suffered heart attacks. In all cases, the rats were subjected to open-heart surgery and the left anterior descending artery was tied off to induce a heart attack. One group of rats were operated on but no heart attacks were induced. A second group was given heart attacks, and then two days later were given intravenous saline infusions. The third group was given a heart attack and then two days later, were injected with one million nonhematopoietic umbilical cord stem cells into their tail veins.

Ten months after the surgery, the heart structure and function of animals from all three groups was assessed with tensor diffusion magnetic imaging, and a pressure‐volume conductance catheter. The hearts were also extirpated from the animals and structurally assessed by means of staining and 3-D imaging.

The stem cell-treated animals were compared with the sham-operated animals and the saline-treated animals. In almost all categories, the stem cell-treated animals had better function. Also, the overall structure of the heart was preserved and looked more like the normal heart than the saline-treated hearts. For example, in the saline-treated group, the heart wall thickness in the infarct zone was reduced by 50% compared to the control rats, and wall thickness at the border zone was also significantly
decreased. However, there were no statistical difference in wall thickness between the stem cell-treated group and the control group.

Additional finds were that the stem cell-treated group had significantly smaller areas of dead cells, more blood vessels, and better heart muscle fiber structure that contracted better.

These data show that the long-term effects of nh-UCBSC administration was to preserve the structure, and, consequently, the function of the heart after a heart attack.

However, the added bonus to this work is that the animals were injected with these cells into the tail vein. The animals did not have to have their chests cracked, or have over-the-wire stent technology to implant these cells; they merely introduced them intravenously. Apparently, the nh-UCBSCs homed to the damaged heart and mediated its healing. If such healing can be translated to human patients, this could truly be a revolutionary find.

Transplanted Human Umbilical Cord Blood Cells Improved Long-Term Heart Muscle Structure and Function in Rats After a Heart Attack

Jianyi Zhang, from the University of Minnesota Health Science Center, in Minneapolis, Minnesota and his co-workers have shown that the transplantation of human umbilical cord blood cells into the rat hearts after a heart attack experience long-term effects that are not observed in the control animals that did not receive the stem cells. Furthermore, none of these laboratory animals required immunosuppressive therapy. The study is scheduled to be published in the journal Cell Transplantation.

“Myocardial infarction induced by coronary artery disease is one of the major causes of heart attack,” said Dr. Zhang. “Because of the loss of viable myocardium after an MI, the heart works under elevated wall stress, which results in progressive myocardial hypertrophy and left ventricular dilation that leads to heart failure. We investigated the long-term effects of stem cell therapy using human non-hematopoietic umbilical cord blood stem cells (nh-UCBCs). These cells have previously exhibited neuro-restorative effects in a rodent model of ischemic brain injury in terms of improved LV function and myocardial fiber structure, the three-dimensional architecture of which make the heart an efficient pump.”

According to Zhang and his co-authors, stem cell researchers have intently examined the ability of stem cells to regenerate and heal damaged heart tissue. Many laboratories all over the world have employed different types of stem cells, different animal models, and distinct modes of stem cell delivery into the heart tissue, and different stem cell doses. All of these studies have produced varying levels of improvement of left ventricular function. Zhang and others also note that, for the most part, the underlying mechanisms by which implanted stem cells improve heart function are “poorly understood and that the overall regeneration of heart muscle cells is modest at best.

In order to investigate the heart’s remodeling processes and to characterize the alterations in cardiac fiber architecture, Zhang’s team used diffusion tensor MRI (DTMRI), which has been previously used to study heart muscle fiber structure in both humans and animals. Most previous studies have concentrated on the short-term effects of umbilical cord blood cells (UCBCs) on damaged heart muscles. Fortunately, this study, which examined the long-term effects of UCBCs, not only demonstrated evidence of significantly improved heart function in treated rats, but also showed evidence of delay and prevention of myocardial fiber structural remodeling. Keep in mind that such alterations in heart muscle fiber structure could have resulted in heart failure.

When compared to the age-matched but untreated rat hearts that had suffered a heart attack, the regional heart muscle function of non-hematopoietic UCBC-treated hearts was significantly improved and the preserved myocardial fiber structure seems to have served as an “underlying mechanism for the observed function improvements.”

“Our data demonstrate that nh-UCBC treatment preserves myocardial fiber structure that supports the improved LV regional and chamber function,” concluded the researchers.

“This study provides evidence that UCBCs could be a potential therapy with long-term benefits for MI” said Dr. Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation. “Preservation of the myocardial fiber structure is an important step towards finding an effective therapy for MIs”

See: Chen, Y.; Ye, L.; Zhong, J.; Li, X.; Yan, C.; Chandler, M. P.; Calvin, S.; Xiao, F.; Negia, M.; Low, W. C.; Zhang, J.; Yu, X. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation . Cell Transplant. Appeared or available online: December 10, 2013.